Towards a provably resilient scheme for graph-based watermarking

Lucila Maria Souza Bento
Davidson Boccardo
Raphael Carlos Santos Machado
Vinícius Gusmão Pereira de Sá
Jayme Luiz Szwarcfiter
Watermarks
Watermarks
Watermarks
Software watermarking

What for?

How?
Software watermarking

```cpp
int fibonacci (int n) {
    int a = 1, b = 1;

    for (int i = 1; i < n; i++) {
        int sum = a + b;
        a = b;
        b = sum;
    }

    return b;
}
```
int fibonaci (int n) {
 int a = 1, b = 1;
 // author: Vinícius
 for (int i = 1; i < n; i++) {
 int sum = a + b;
 a = b;
 b = sum;
 }
 return b;
}
Software watermarking

```c
int fibonnaci (int n) {
    int a = 1, b = 1;
    string author = "Vinícius";
    for (int i = 1; i < n; i++) {
        int sum = a + b;
        a = b;
        b = sum;
    }

    return b;
}
```
Graph-based software watermarking

int fibonacci (int n) {
 int a = 1, b = 1;

 for (int i = 1; i < n; i++) {
 int sum = a + b;
 a = b;
 b = sum;
 }

 return b;
}
Graph-based software watermarking

Davidson and Myhrvold (1996)
Venkatesan, Vazirani and Sinha (2001)
Collberg et al. (WG 2003)

“author: Vinícius”

```c
int fibonacci (int n) {
    int a = 1, b = 1;

    for (int i = 1; i < n; i++) {
        int sum = a + b;
        a = b;
        b = sum;
    }

    return b;
}
```
Graph-based software watermarking

```c
int fibonacci(int n) {
    int a = 1, b = 1;

    for (int i = 1; i < n; i++) {
        int sum = a + b;
        a = b;
        b = sum;
    }

    return b;
}
```

“author: Vinícius”

(100101010001110101001101011)
Graph-based software watermarking

```c
int fibonacci (int n) {
    int a = 1, b = 1;
    for (int i = 1; i < n; i++) {
        int sum = a + b;
        a = b;
        b = sum;
    }
    return b;
}
```

“author: Vinícius”

(100101010001110101001101011)

Davidson and Myhrvold (1996)
Venkatesan, Vazirani and Sinha (2001)
Collberg et al. (WG 2003)

Control flow graph
Graph-based software watermarking

```c
int fibonnaci (int n) {
    int a = 1, b = 1;

    for (int i = 1; i < n; i++) {
        int sum = a + b;
        a = b;
        b = sum;
    }

    return b;
}
```

“author: Vinícius”

(100101010001110101001101011)

Control flow graph
Graph-based software watermarking

int fibonacci (int n) {
 int a = 1, b = 1;

 for (int i = 1; i < n; i++) {
 int sum = a + b;
 a = b;
 b = sum;
 }

 return b;
}
Graph-based software watermarking

Encoding

Decoding

10010101000111010101001101011

Chroni and Nikolopoulos (2011)
The codec from Chroni and Nikolopoulos

key $\omega = 29$
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101 \quad n = 5$

Chroni and Nikolopoulos (2011)
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101 \quad n = 5$

$\bar{B} = 00010$

Chroni and Nikolopoulos (2011)
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101 \quad n = 5$

$\bar{B} = 00010$

$B^* = 11111\ 00010\ 0$

n 1’s
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101$ \quad n = 5$

$\bar{B} = 00010$

$B^* = 11111 \, 00010 \, 0$

n 1’s

$Z_0 = 6, 7, 8, 10, 11$

$Z_1 = 1, 2, 3, 4, 5, 9$

Chroni and Nikolopoulos (2011)
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101 \quad n = 5$

$\bar{B} = 00010$

$B^* = 11111 \ 00010 \ 0$

n 1’s

$Z_0 = 6, 7, 8, 10, 11$

$Z_1 = 1, 2, 3, 4, 5, 9$

$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$

Chromni and Nikolopoulos (2011)
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101 \quad n = 5$

$\overline{B} = 00010$

$B^* = 11111 \ 00010 \ 0$

$n \ 1\text{'s}$

$Z_0 = 6, 7, 8, 10, 11$

$Z_1 = 1, 2, 3, 4, 5, 9$
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101 \quad n = 5$

$\bar{B} = 00010$

$B^* = 11111 \ 00010 \ 0$

n 1’s

$Z_0 = 6, 7, 8, 10, 11$

$Z_1 = 1, 2, 3, 4, 5, 9$

Chroni and Nikolopoulos (2011)

$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$

$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101 \quad n = 5$

$\overline{B} = 00010$

$B^* = 11111 00010 0$

n 1's

$Z_0 = 6, 7, 8, 10, 11$

$Z_1 = 1, 2, 3, 4, 5, 9$

$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$

$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 4, 5$

fixed element

Chroni and Nikolopoulos (2011)
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101$ \quad n = 5$

$\bar{B} = 00010$

$B^* = 11111\ 00010\ 0$

n 1's

$Z_0 = 6, 7, 8, 10, 11$

$Z_1 = 1, 2, 3, 4, 5, 9$

Chroni and Nikolopoulos (2011)

$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$

$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101 \quad n = 5$

$\bar{B} = 00010$

$B^* = 11111 \ 00010 \ 0$

$n \ 1's$

$Z_0 = 6, 7, 8, 10, 11$

$Z_1 = 1, 2, 3, 4, 5, 9$

Chroni and Nikolopoulos (2011)

$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$

$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

$\ Z_0 \
\ Z_1^R \

6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$
The codec from Chroni and Nikolopoulos:

- Key: $\omega = 29$
- $B = 11101$, $n = 5$
- $\bar{B} = 00010$
- $B^* = 11111000100$ (n 1's)

- $Z_0 = 6, 7, 8, 10, 11$
- $Z_1 = 1, 2, 3, 4, 5, 9$

- $P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$
- $P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$
- $12, 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

- $2n+2$
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101$ \hspace{0.5cm} $n = 5$

$\bar{B} = 00010$

$B^* = 11111 \ 00010 \ 0$

$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$

$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

$12, 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

Z_0

Z_1^R

Chroni and Nikolopoulos (2011)
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101$ \hspace{1cm} $n = 5$

$\bar{B} = 00010$

$B^* = 11111 \ 00010 \ 0$

n 1’s

$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$

$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

$12, 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

Chroni and Nikolopoulos (2011)
The codec from Chroni and Nikolopoulos

key \(\omega = 29 \)

\[B = 11101 \quad n = 5 \]

\[\bar{B} = 00010 \]

\[B^* = 11111 \quad 00010 \quad 0 \]

\[P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1 \]

\[P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5 \]

\[12, 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5 \]

Chroni and Nikolopoulos (2011)
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101 \quad n = 5$

$\bar{B} = 00010$

$B^* = 11111 \ 00010 \ 0$

$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$

$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

$12, 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

Z_0

Z_1^R

Chroni and Nikolopoulos (2011)
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = \overline{B} = 11101$
$n = 5$

$\bar{B} = 00010$

$B^* = 11111\ 00010\ 0$

$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$

$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

$12, 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$
The codec from Chroni and Nikolopoulos

key \(\omega = 29 \)

\(B = 11101 \quad n = 5 \)

\(\bar{B} = 00010 \)

\(B^* = 11111 \quad 00010 \quad 0 \)

\(P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1 \)

\(P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5 \)

\(12, 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5 \)
The codec from Chroni and Nikolopoulos

key \(\omega = 29 \)

\[B = 11101 \quad n = 5 \]

\[\bar{B} = 00010 \]

\[B^* = 11111 \ 00010 \ 0 \]

\[n \text{ 1's} \]

\[P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1 \]

\[P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5 \]

\[12, 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5 \]

Chroni and Nikolopoulos (2011)
The codec from Chroni and Nikolopoulos
The codec from Chroni and Nikolopoulos

key $\omega = 29$

$B = 11101 \quad n = 5$

$\bar{B} = 00010$

$B^* = 11111\ 00010\ 0$

$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$

$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

$12, 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

Chroni and Nikolopoulos (2011)
Our contribution

1. **full characterization of the class of canonical reducible permutation graphs** (the graphs produced by Chroni and Nikolopoulos’s encoding algorithm)

2. a **linear-time recognition algorithm** for such graphs

3. a **new linear-time decoding algorithm** (graph \rightarrow integer key) simpler, marginally faster and able to retrieve the correct key even after the malicious removal of $k \leq 2$ edges

4. a **tight bound for the resilience of the codec against edge removals**
Our contribution

1. **formal definition of the class** of *canonical reducible permutation graphs* (precisely the graphs produced by Chroni and Nikolopoulos’s’s encoding algorithm)

2. characterization and linear-time recognition algorithm for such graphs

3. a new linear-time decoding algorithm (graph \rightarrow integer key) simpler, marginally faster and able to retrieve the correct key even after the malicious removal of $k \leq 2$ edges

4. a tight bound for the resilience of the codec against edge removals

B., B., M., S., S. (WG 2013)
Canonical reducible permutation graphs
Canonical reducible permutation graphs

canonical reducible permutation

self-labeling reducible flow graph
Definition

Self-labeling reducible flow graph $G(V,E)$:
- vertices $0, \ldots, |V|-1$
- exactly one Hamiltonian path
- v in $V \setminus \{0, |V|-1\} \implies N^+(v) = \{v-1, w\}$, for some $w > v$
- $v = 0 \implies N^+(v) = \{\}$
- $N^-(v) = \{1\}$
- $v = |V|-1 \implies N^+(v) = \{|V|-2\}$
- $|N^-(v)| \geq 2$
Canonical reducible permutation graphs
Canonical reducible permutation graphs
Canonical reducible permutation graphs
Canonical reducible permutation graphs

Representative tree

- children in ascending order
- max-heap property
Canonical reducible permutation graphs

Representative tree

- children in ascending order
- max-heap property

root-free preorder traversal:
6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5
Definition

Canonical self-inverting permutation

- a self-inverting permutation
- elements $s_i = 1, 2, \ldots, 2n+1$
- exactly one fixed element
- each 2-cycle (s_i, s_j) satisfies
 \[1 \leq i \leq n, \quad s_i > s_j \]
Definition

Canonical reducible permutation graph:
- a self-labeling reducible flow graph
- $2n+3$ vertices
- its representative tree has a (root-free) preorder traversal which is a canonical self-inverting permutation
Theorem

Watermark from Chroni and Nikolopoulos

Canonical reducible permutation graph
Canonical reducible permutation graphs

Theorem

Watermark from Chroni and Nikolopoulos

Canonical reducible permutation graph

(Proof by “we don’t want to know the details” argument)
Canonical reducible permutation graphs

key ω = 29

$B = 11101 \quad n = 5$

$\bar{B} = 00010$

$B^* = 11111 \ 00010 \ 0$

$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$

$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

Z_0

Z_1^R

Chroni and Nikolopoulos (2011)

several structural properties
Codec properties

Property 1 For $1 \leq i \leq n$, element b_{n+i+1} in P_b is equal to $n - i + 1$, that is, the n rightmost elements in P_b are $1, 2, \ldots, n$ when read from right to left.

Property 2 The elements whose indexes are $1, 2, \ldots, n$ in P_s are all greater than n.

Property 3 The fixed element f satisfies $f = n + f_0$, unless the key ω is equal to $2^k - 1$ for some integer k, whereupon $f = n^* = 2n + 1$.

Property 4 In self-inverting permutation P_s, elements indexed $1, 2, \ldots, f - n - 1$ are respectively equal to $n + 1, n + 2, \ldots, f - 1$, and elements indexed $n + 1, n + 2, \ldots, f - 1$ are respectively equal to $1, 2, \ldots, f - n - 1$.

Property 5 The first element in P_s is $s_1 = n + 1$, and the central element in P_s is $s_{n+1} = 1$.

Property 6 If $f \neq n^*$, then the index of element n^* in P_s is equal to $n_1 + 1$, and vice-versa. If $f = n^*$, then the index of element n^* in P_s is also n^*.

Property 7 The subsequence of P_s consisting of elements indexed $1, 2, \ldots, n + 1$ is bitonic.

Property 8 For $u \neq 2n + 1$, $(u, 2n + 2)$ is a tree edge of watermark G if, and only if, $u - n$ is the index of a digit 1 in the binary representation B of the key ω represented by G.

Property 9 If (u, k) is a tree edge of watermark G, with $k \neq 2n + 2$, then (i) element k precedes u in P_s; and (ii) if v is located somewhere between k and u in P_s, then $v < u$.
Canonical reducible permutation graphs

Theorem
Watermark from Chroni and Nikolopoulos

Canonical reducible permutation graph

(Proof by “we don’t want to know the details” argument)
Our contribution

1. **formal definition of the class** of *canonical reducible permutation graphs* (precisely the graphs produced by Chroni and Nikolopoulos’s encoding algorithm)

2. **characterization and linear-time recognition algorithm** for such graphs

3. a new linear-time decoding algorithm (graph \rightarrow integer key) simpler, marginally faster and able to retrieve the correct key even after the malicious removal of $k \leq 2$ edges

4. a **tight bound for the resilience of the codec** against edge removals
Characterizing the watermark graphs
(canonical reducible permutation graphs)

Theorem (characterization)
Canonical reducible permutation graph

Self-labeling reducible flow graph such that:
• its fixed element is $2n+1$, and
 its representative tree is a “type-1” tree
or
• its fixed element belongs to $[n+2, 2n]$, and
 its representative tree is a “type-2” tree
Theorem (characterization)

Canonical reducible permutation graph

Self-labeling reducible flow graph such that:
- its fixed element is $2n+1$, and
 its representative tree is a “type-1” tree
or
- its fixed element belongs to $[n+2, 2n]$, and
 its representative tree is a “type-2” tree
Types of representative trees

type-1

(i) \(n + 1, n + 2, \ldots, 2n + 1\) are children of the root \(2n + 2\) in \(T\); and
(ii) \(1, 2, \ldots, n\) are children of \(2n\).

type-2

(i) \(n + 1 = x_1 < x_2 < \ldots < x_\ell = 2n + 1\) are the children of \(2n + 2\), for some \(\ell \in [2, n - 1]\);
(ii) \(x_i > x_{i+1}\) and \(x_i\) is the parent of \(x_{i+1}\), for all \(i \in [\ell, n - 1]\);
(iii) \(1, 2, \ldots, f - n - 1\) are children of \(x_n\);
(iv) \(x_i = n + i\), for \(1 \leq i \leq f - n - 1\);
(v) \(f\) is a child of \(x_q\), for some \(q \in [\ell, n]\) satisfying \(x_{q+1} < f\) whenever \(q < n\); and
(vi) \(N_T^*(f) = \{f - n, f - n + 1, \ldots, n\}\) and \(y_i \in N_T^*(f)\) has index \(x_{y_i} - f + 1\) in the preorder traversal of \(N_T^*[f]\).

(f denotes the unique fixed element)
Linear-time recognition

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.
Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph... provided we have the vertex labels!
Linear-time recognition

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph... provided we have the vertex labels!

Linear-time algorithm to find the unique Hamiltonian path
Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Linear-time algorithm to find the unique Hamiltonian path
Linear-time recognition

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph... provided we have the vertex labels!

Linear-time algorithm to find the unique Hamiltonian path
Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph… provided we have the vertex labels!

Linear-time algorithm to find the unique Hamiltonian path
Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Linear-time algorithm to find the unique Hamiltonian path
Linear-time recognition

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph... provided we have the vertex labels!

Linear-time algorithm to find the unique Hamiltonian path
Linear-time recognition

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Linear-time algorithm to find the unique Hamiltonian path
Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph... *provided we have the vertex labels!*

Linear-time algorithm to find the unique Hamiltonian path
Linear-time recognition

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph... provided we have the vertex labels!

Linear-time algorithm to find the unique Hamiltonian path
Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... *provided we have the vertex labels!*

Linear-time algorithm to find the unique Hamiltonian path
Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Linear-time algorithm to find the unique Hamiltonian path
Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Linear-time algorithm to find the unique Hamiltonian path
Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph... provided we have the vertex labels!

Linear-time algorithm to find the unique Hamiltonian path
Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph... *provided we have the vertex labels!*

Linear-time algorithm to find the unique Hamiltonian path
Linear-time recognition

Procedure 1: Reconstructing the Hamiltonian path

\[V_0 \leftarrow \{ v \in V(G') \text{ s.t. } |N_{G'}^+| = 0 \}; \quad V_1 \leftarrow \{ v \in V(G') \text{ s.t. } |N_{G'}^+| = 1 \} \]

if \(|V_0| = 1 \) then
 let \(v_0 \) be the unique element in \(V_0 \)
 if \(|H(v_0)| = 2n + 3 \) then \(H \leftarrow H(v_0) \), return \(H \)
 else if \(\exists v_1 \in V_1 \) such that \(|H(v_0)| + |H(v_1)| = 2n + 3 \) then
 \(H \leftarrow H(v_1)||H(v_0) \), return \(H \)
else
 let \(v_1, v'_1 \in V_1 \) be such that
 \[|H(v_0)| + |H(v_1)| + |H(v'_1)| = 2n + 3 \text{ and } N_{G'}^+(\text{first}(H(v_1))) \cap H(v'_1) \neq \emptyset \]
 \(H \leftarrow H(v'_1)||H(v_1)||H(v_0) \), return \(H \)
else
 let \(v_0, v'_0 \) be the elements in \(V_0 \)
 if \(|H(v_0)| + |H(v'_0)| = 2n + 3 \) then
 let \(v_0 \) be such that \(N_{G'}^+(\text{first}(H(v_0))) \cap H(v'_0) \neq \emptyset \)
 \(H \leftarrow H(v'_0)||H(v_0) \), return \(H \)
 else
 let \(v'_0 \in V_0 \) and \(v_1 \in V_1 \) be such that \(v'_0 \in N_{G'}^+(\text{first}(H(v_1))) \)
 \(H \leftarrow H(v'_0)||H(v_1)||H(v_0) \), return \(H \)
Linear-time recognition

Procedure 1: Reconstructing the Hamiltonian path

\[V_0 \leftarrow \{ v \in V(G') \text{ s.t. } |N^+_G| = 0 \}; \quad V_1 \leftarrow \{ v \in V(G') \text{ s.t. } |N^+_G| = 1 \} \]

if \(|V_0| = 1\) then

let \(v_0\) be the unique element in \(V_0\)

if \(|H(v_0)| = 2n + 3\) then \(H \leftarrow H(v_0)\), return \(H\)

else if \(\exists v_1 \in V_1\) such that \(|H(v_0)| + |H(v_1)| = 2n + 3\) then

\(H \leftarrow H(v_1) || H(v_0)\), return \(H\)

else

let \(v_1, v'_1 \in V_1\) be such that

\(|H(v_0)| + |H(v_1)| + |H(v'_1)| = 2n + 3\) and \(N^+_G(first(H(v_1)) \cap H(v'_1)) \neq \emptyset\)

\(H \leftarrow H(v'_1) || H(v_1) || H(v_0)\), return \(H\)

else

let \(v_0, v'_0 \in V_0\)

if \(|H(v_0)| + |H(v'_0)| = 2n + 3\) then

let \(v_0\) be such that \(N^+_G(first(H(v_0))) \cap H(v'_0) \neq \emptyset\)

\(H \leftarrow H(v'_0) || H(v_0)\), return \(H\)

else

let \(v'_0 \in V_0\) and \(v_1 \in V_1\) be such that \(v'_0 \in N^+_G(first(H(v_1)))\)

\(H \leftarrow H(v'_0) || H(v_1) || H(v_0)\), return \(H\)
Our contribution

1. **formal definition of the class** of *canonical reducible permutation graphs* (precisely the graphs produced by Chroni and Nikolopoulos’s encoding algorithm)

2. **characterization** and **linear-time recognition algorithm** for such graphs

3. a **new linear-time decoding algorithm** (graph → integer key)

simpler, marginally faster and able to retrieve the correct key even after the malicious removal of \(k \leq 2 \) edges

4. a **tight bound** for the resilience of the codec against edge removals
A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly
2. find the fixed element f
3. find the set A of the child nodes of the root of the representative tree that are different from $2n+1$
4. calculate the key as follows

$$A = \begin{array}{c}
6 \\
7 \\
8 \\
10 \\
11 = 2n+1
\end{array}$$

$$\omega = \sum_{x_i \in A} 2^{2n-x_i}$$

Representative tree
A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly
2. find the fixed element f
3. find the set A of the child nodes of the root of the representative tree that are different from $2n+1$
4. calculate the key as follows

$$\omega = \sum_{x_i \in A} 2^{2n-x_i}$$
A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly
2. find the fixed element f
3. find the set A of the child nodes of the root of the representative tree that are different from $2n+1$
4. calculate the key as follows

with $k \leq 2$ missing edges
A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly
2. find the fixed element f
3. find the set A of the child nodes of the root of the representative tree that are different from $2n+1$
4. calculate the key as follows

Procedure 2: Finding $f \neq 2n + 1$

1. If F contains a large vertex x having a sibling z
 then let $f \leftarrow \max\{x, z\}$ and terminate the algorithm. Otherwise,
2. For each large vertex x of F satisfying $N_F(x) \neq \emptyset$ and each small $y \in N_F(x)$,
 let $Y' = \{x - n, x - n + 1, \ldots, n\}$. If $N_F^+(x) = Y'$ or $N_F^+(x) \subset Y'$,
 and $Y' \setminus N_F^+(x)$ is the vertex set of one of the trees of F,
 then let $f \leftarrow x$ and terminate the algorithm. Otherwise,
3. Find the preorder traversals of the three trees of F, and
 then let f be the unique vertex that is both large and the rightmost element
 of the preorder traversal of some tree of F.

A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly
2. find the fixed element f
3. find the set A of the child nodes of the root of the representative tree that are different from $2n+1$
4. calculate the key as follows

Procedure 2: Finding $f \neq 2n + 1$

1. If F contains a large vertex x having a sibling z then let $f \leftarrow \max\{x, z\}$ and terminate the algorithm. Otherwise,
2. For each large vertex x of F satisfying $N_F(x) \neq \emptyset$ and each small $y \in N_F(x)$, let $Y' = \{x - n, x - n + 1, \ldots, n\}$. If $N_F^+(x) = Y'$ or $N_F^+(x) \subset Y'$, and $Y' \setminus N_F^+(x)$ is the vertex set of one of the trees of F, then let $f \leftarrow x$ and terminate the algorithm. Otherwise,
3. Find the preorder traversals of the three trees of F, and then let f be the unique vertex that is both large and the rightmost element of the preorder traversal of some tree of F. with $k \leq 2$ missing edges
A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly
2. find the fixed element \(f \)
3. find the set \(A \) of the child nodes of the root of the representative tree that are different from \(2n+1 \)
4. calculate the key as follows

Procedure 3: Constructing the set of large ascending vertices

1. If \(F[X_c] \cup \{2n + 2\} \) is connected then \(A \leftarrow N_F(2n + 2) \) and terminate the algorithm. Otherwise,
2. If \(F[X_c] \cup \{2n + 2\} \) contains no isolated vertices then \(A \leftarrow N_F(2n + 2) \cup \{2n + 1\} \) and terminate the algorithm. Otherwise,
3. If \(F[X_c] \cup \{2n + 2\} \) contains two isolated vertices \(x, x' \) then \(A \leftarrow N_F(2n + 2) \cup \{x, x'\} \) and terminate the algorithm. Otherwise,
4. If \(F[X_c] \cup \{2n + 2\} \) contains a unique isolated vertex \(x \) then
 - if \(|N_F^*(f)| = 2n - f + 1 \) then
 - let \(y_r \) be the rightmost vertex of \(N_F^*(f) \)
 - if \(|N_F(2n + 2)| < y_r \) then \(A \leftarrow N_F(2n + 2) \cup \{x, 2n + 1\} \)
 - else \(A \leftarrow N_F(2n + 2) \)
 - else \(A \leftarrow N_F(2n + 2) \cup \{x\} \)
A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly
2. find the fixed element f
3. find the set A of the child nodes of the root of the representative tree that are different from $2n+1$
4. calculate the key as follows

Procedure 3: Constructing the set of large ascending vertices

1. If $F[X_c] \cup \{2n + 2\}$ is connected then $A \leftarrow N_F(2n + 2)$ and terminate the algorithm. Otherwise,
2. If $F[X_c] \cup \{2n + 2\}$ contains no isolated vertices then $A \leftarrow N_F(2n + 2) \cup \{2n + 1\}$ and terminate the algorithm. Otherwise,
3. If $F[X_c] \cup \{2n + 2\}$ contains two isolated vertices x, x' then $A \leftarrow N_F(2n + 2) \cup \{x, x'\}$ and terminate the algorithm. Otherwise,
4. If $F[X_c] \cup \{2n + 2\}$ contains a unique isolated vertex x then
 if $|N^*_F(f)| = 2n - f + 1$ then
 let y_r be the rightmost vertex of $N^*_F(f)$
 if $|N_F(2n + 2)| < y_r$ then $A \leftarrow N_F(2n + 2) \cup \{x, 2n + 1\}$
 else $A \leftarrow N_F(2n + 2)$
 else $A \leftarrow N_F(2n + 2) \cup \{x\}$

with $k \leq 2$ missing edges
A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly
2. find the fixed element f
3. find the set A of the child nodes of the root of the representative tree that are different from $2n+1$
4. calculate the key as follows with $k \leq 2$ missing edges
A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly
2. find the fixed element f
3. find the set A of the child nodes of the root of the representative tree that are different from $2n+1$
4. calculate the key as follows

Experimental results

<table>
<thead>
<tr>
<th>n bits</th>
<th>former alg.</th>
<th>our alg.</th>
<th>our alg. (-1 edge)</th>
<th>our alg. (-2 edges)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>82.2 (4.4) μs</td>
<td>56.5 (3.2) μs</td>
<td>63.9 (6.7) μs</td>
<td>78.0 (16.4) μs</td>
</tr>
<tr>
<td>10</td>
<td>132.3 (9.3) μs</td>
<td>95.7 (5.8) μs</td>
<td>104.2 (9.4) μs</td>
<td>122.8 (24.8) μs</td>
</tr>
<tr>
<td>20</td>
<td>240.9 (11.8) μs</td>
<td>177.5 (9.7) μs</td>
<td>190.7 (17.4) μs</td>
<td>219.9 (44.9) μs</td>
</tr>
<tr>
<td>30</td>
<td>357.7 (14.4) μs</td>
<td>268.9 (13.2) μs</td>
<td>281.3 (18.2) μs</td>
<td>328.1 (66.0) μs</td>
</tr>
<tr>
<td>100</td>
<td>1406.7 (45.7) μs</td>
<td>1135.4 (39.5) μs</td>
<td>1151.2 (89.8) μs</td>
<td>1248.5 (260.4) μs</td>
</tr>
</tbody>
</table>

average time (standard deviation)
Our contribution

1. **formal definition of the class** of *canonical reducible permutation graphs* (precisely the graphs produced by Chroni and Nikolopoulos’s encoding algorithm)

2. **characterization** and **linear-time recognition algorithm** for such graphs

3. a **new linear-time decoding algorithm** (graph \rightarrow integer key) simpler, marginally faster and able to retrieve the correct key even after the malicious removal of $k \leq 2$ edges

4. a **tight bound for the resilience of the codec** against edge removals
Resilience against edge modifications

\[\omega = 2 \quad \text{(B = 10)} \]

\[\omega = 3 \quad \text{(B = 11)} \]
Resilience against edge modifications

$\omega = 2 \quad (B = 10)$

$\omega = 3 \quad (B = 11)$
Resilience against edge modifications

\[\omega = 2 \quad (B = 10) \]

\[\omega = 3 \quad (B = 11) \]
Resilience against edge modifications

For \(n > 2 \) bits, it is possible to detect up to 5 edge insertions/deletions in polynomial time. This bound is tight.
Danke schön!

Vinícius Gusmão Pereira de Sá
Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil
vigusmao@dcc.ufrj.br
Towards a provably resilient scheme for graph-based watermarking

Lucila Maria Souza Bento
Davidson Boccardo
Raphael Carlos Santos Machado
Vinícius Gusmão Pereira de Sá
Jayme Luiz Szwarcfiter