Towards a provably resilient scheme for graph-based watermarking

Lucila Maria Souza Bento
Davidson Boccardo
Raphael Carlos Santos Machado
Vinícius Gusmão Pereira de Sá
Jayme Luiz Szwarcfiter

Watermarks

Watermarks

ResourceSpaceRe

Watermarks


```
int fibonnaci (int n) {
   int a = 1, b = 1;

for (int i = 1; i < n; i++) {
   int sum = a + b;
   a = b;
   b = sum;
  }

return b;
}</pre>
```

```
int fibonnaci (int n) {
   int a = 1, b = 1;

for (int i = 1; i < n; i++) {
   int sum = a + b;
   a = b;
   b = sum;
  }

// author: Vinícius
  return b;
}</pre>
```

```
int fibonnaci (int n) {
   int a = 1, b = 1;
   string author = "Vinícius";
   for (int i = 1; i < n; i++) {
      int sum = a + b;
      a = b;
      b = sum;
   }
   return b;
}</pre>
```

```
int fibonnaci (int n) {
  int a = 1, b = 1;

for (int i = 1; i < n; i++) {
   int sum = a + b;
   a = b;
   b = sum;
}

return b;</pre>
```

Control flow graph

Davidson and Myhrvold (1996) Venkatesan, Vazirani and Sinha (2001) Collberg et al. (WG 2003)


```
int fibonnaci (int n) {
   int a = 1, b = 1;

for (int i = 1; i < n; i++) {
   int sum = a + b;
   a = b;
   b = sum;
}

   Davids
   Venkat
}</pre>
```

Control flow graph

Davidson and Myhrvold (1996) Venkatesan, Vazirani and Sinha (2001) Collberg et al. (WG 2003)

"author: Vinícius"


```
int fibonnaci (int n) {
  int a = 1, b = 1;

for (int i = 1; i < n; i++) {
    int sum = a + b;
    a = b;
    b = sum;
}

return b;</pre>
```

Control flow graph

Davidson and Myhrvold (1996) Venkatesan, Vazirani and Sinha (2001) Collberg et al. (WG 2003)

"author: Vinícius"

(10010101000111010101001101011)


```
int fibonnaci (int n) {
  int a = 1, b = 1;

for (int i = 1; i < n; i++) {
   int sum = a + b;
   a = b;
   b = sum;
  }

return b;</pre>
```

Control flow graph

Davidson and Myhrvold (1996) Venkatesan, Vazirani and Sinha (2001) Collberg et al. (WG 2003)

"author: Vinícius"

(10010101000111010101001101011)


```
0x0000 -
                                                                                                        0x0004 -
                                                               Control flow graph
int fibonnaci (int n) {
                                                                                              0x0004
                                                                                                        0x0006
  int a = 1, b = 1;
                                                                                             0x0082 -
                                                                                              0x0086
  for (int i = 1; i < n; i++) {
     int sum = a + b;
     a = b;
                                                                                             0x0086
                                                                                              0x008E
     b = sum;
                                                                                             0x008E -
                                                                                              0x009C
  return b;
                                                                                             0x009C -
                                                                                                          0x00A0 -
                                                                                              0x00A0
                                                                                                           0x00A4
              "author: Vinícius"
                                                                                                          0x00A4 -
                                                                                                           0x00A8
              (10010101000111010101001101011)
                                                                                                 0x00AC
                                                                                                                 0x00A8 -
                                                                                                  0x00B4
                                                                                                                  0x00AC
                                                                                                 0x00B4
                                                                                                  0x00B6
```

```
int fibonnaci (int n) {
  int a = 1, b = 1;
  for (int i = 1; i < n; i++) {
    int sum = a + b;
    a = b;
     b = sum;
  return b;
```

(10010101000111010101001101011)

Chroni and Nikolopoulos (2011)

Encoding

key
$$\omega = 29$$

key
$$\omega = 29$$

$$B = 11101$$
 $n = 5$

key
$$\omega = 29$$

$$B = 11101$$
 $n = 5$

$$\bar{B} = 00010$$

key
$$\omega = 29$$
 $B = 11101$ $n = 5$
 $\bar{B} = 00010$
 $B^* = 11111 00010 0$

key
$$\omega = 29$$

$$B = 11101$$
 $n = 5$

$$\bar{B} = 00010$$

$$B^* = 11111 00010 0$$

$$Z_0 = 6, 7, 8, 10, 11$$

$$Z_1 = 1, 2, 3, 4, 5, 9$$

key
$$\omega = 29$$

$$B = 11101$$

$$n = 5$$

$$\bar{B} = 00010$$

$$Z_0 = 6, 7, 8, 10, 11$$

$$Z_1 = 1, 2, 3, 4, 5, 9$$

$$Z_0$$
 Z_1^R $P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$

key
$$\omega = 29$$

$$B = 11101$$
 $n = 5$

$$\bar{B} = 00010$$

$$Z_0 = 6, 7, 8, 10, 11$$

$$Z_1 = 1, 2, 3, 4, 5, 9$$

key
$$\omega = 29$$

$$B = 11101$$
 $n = 5$

$$\bar{B} = 00010$$

$$Z_0 = 6, 7, 8, 10, 11$$

$$Z_1 = 1, 2, 3, 4, 5, 9$$

$$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$$
1 2 3 4 5 6 7 8 9 10 11

Chroni and Nikolopoulos (2011)

key
$$\omega = 29$$

$$B = 11101$$
 $n = 5$

$$\bar{B} = 00010$$

$$Z_0 = 6, 7, 8, 10, 11$$

$$Z_1 = 1, 2, 3, 4, 5, 9$$

$$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$$
1 2 3 4 5 6 7 8 9 10 11

fixed element

Chroni and Nikolopoulos (2011)

key
$$\omega = 29$$

$$B = 11101$$

$$n = 5$$

$$\bar{B} = 00010$$

$$Z_0 = 6, 7, 8, 10, 11$$

$$Z_1 = 1, 2, 3, 4, 5, 9$$

$$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$$

 $P_{s} = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

key
$$\omega = 29$$

$$B = 11101$$

$$n = 5$$

$$\bar{B} = 00010$$

$$Z_0 = 6, 7, 8, 10, 11$$

$$Z_1 = 1, 2, 3, 4, 5, 9$$

$$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$$

 $P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$
 $6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

key
$$\omega = 29$$

$$B = 11101$$

$$n = 5$$

$$\bar{B} = 00010$$

$$Z_0 = 6, 7, 8, 10, 11$$

$$Z_1 = 1, 2, 3, 4, 5, 9$$

$$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$$

 $P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$
12, 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5

key
$$\omega = 29$$

$$B = 11101$$

$$n = 5$$

$$\bar{B} = 00010$$

$$B^* = 11111 00010 0$$

$$P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$$

$$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$$

Chroni and Nikolopoulos (2011)

key
$$\omega = 29$$
 $B = 11101$ $n = 5$
 $\bar{B} = 00010$
 $B^* = 11111 00010 0$

n 1's

$$Z_0$$
 Z_1^R
 $P_b = 6, 7, 8, 10, 11, 9, 5, 4, 3, 2, 1$
 $P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$

12, 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5

key
$$\omega = 29$$

$$B = 11101$$

$$n = 5$$

$$\bar{B} = 00010$$

$$B^* = 11111 00010 0$$

$$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$$

$$\text{key } \omega = 29$$

$$B = 11101$$

$$n = 5$$

$$\bar{B} = 00010$$

$$P_s = 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5$$

Our contribution

- 1. **full characterization of the class** of *canonical reducible permutation graphs* (the graphs produced by Chroni and Nikolopoulos's encoding algorithm)
- 2. a linear-time recognition algorithm for such graphs
- 3. a **new linear-time decoding algorithm** (graph \rightarrow integer key) simpler, marginally faster and able to retrieve the correct key even after the malicious removal of $k \le 2$ edges
- 4. a **tight bound for the resilience of the codec** against edge removals

Our contribution

- 1. **formal definition of the class** of *canonical reducible permutation graphs* (precisely the graphs produced by Chroni and Nikolopoulos's encoding algorithm)
- 2. characterization and linear-time recognition algorithm for such graphs
- 3. a **new linear-time decoding algorithm** (graph \rightarrow integer key) simpler, marginally faster and able to retrieve the correct key even after the malicious removal of $k \le 2$ edges
- 4. a **tight bound for the resilience of the codec** against edge removals

canonical reducible permutation

Definition

Self-labeling reducible flow graph G(V,E):

- vertices 0, ..., |V|-1
- exactly one Hamiltonian path
- $v \text{ in } V \setminus \{0, |V|-1\} \implies N^+(v) = \{v-1, w\},$ for some w > v

$$v = 0 \implies N^{+}(v) = \{ \}$$
 $N^{-}(v) = \{1\}$
 $v = |V|-1 \implies N^{+}(v) = \{|V|-2\}$
 $|N^{-}(v)| \ge 2$

- children in ascending order
- max-heap property

root-free preorder traversal: 6, 7, 8, 10, 11, 1, 2, 3, 9, 4, 5

Definition

Canonical self-inverting permutation

- a self-inverting permutation
- elements $s_i = 1, 2, ..., 2n+1$
- exactly one fixed element
- each 2-cycle (s_i, s_i) satisfies

$$1 \le i \le n, s_i > s_j$$

Definition

- a self-labeling reducible flow graph
- 2*n*+3 vertices
- its representative tree has a (root-free) preorder traversal which is a canonical self-inverting permutation

Theorem

Watermark from Chroni and Nikolopoulos

Theorem

Watermark from Chroni and Nikolopoulos

Canonical reducible permutation graph

(Proof by "we don't want to know the details" argument)

Chroni and Nikolopoulos (2011)

Codec properties

Property 1 For $1 \le i \le n$, element b_{n+i+1} in P_b is equal to n-i+1, that is, the n rightmost elements in P_b are $1, 2, \ldots, n$ when read from right to left.

Property 2 The elements whose indexes are 1, 2, ..., n in P_s are all greater than n.

Property 3 The fixed element f satisfies $f = n + f_0$, unless the key ω is equal to $2^k - 1$ for some integer k, whereupon $f = n^* = 2n + 1$.

Property 4 In self-inverting permutation P_s , elements indexed 1, 2, ..., f - n - 1 are respectively equal to n + 1, n + 2, ..., f - 1, and elements indexed n + 1, n + 2, ..., f - 1 are respectively equal to 1, 2, ..., f - n - 1.

Property 5 The first element in P_s is $s_1 = n + 1$, and the central element in P_s is $s_{n+1} = 1$.

Property 6 If $f \neq n^*$, then the index of element n^* in P_s is equal to $n_1 + 1$, and vice-versa. If $f = n^*$, then the index of element n^* in P_s is also n^* .

Property 7 The subsequence of P_s consisting of elements indexed 1, 2, ..., n+1 is bitonic.

Property 8 For $u \neq 2n + 1$, (u, 2n + 2) is a tree edge of watermark G if, and only if, u - n is the index of a digit 1 in the binary representation B of the key ω represented by G.

Property 9 If (u, k) is a tree edge of watermark G, with $k \neq 2n + 2$, then (i) element k precedes u in P_s ; and (ii) if v is located somewhere between k and u in P_s , then v < u.

Theorem

Watermark from Chroni and Nikolopoulos

Canonical reducible permutation graph

(Proof by "we don't want to know the details" argument)

Our contribution

- 1. **formal definition of the class** of *canonical reducible permutation graphs* (precisely the graphs produced by Chroni and Nikolopoulos's encoding algorithm)
- 2. characterization and linear-time recognition algorithm for such graphs
- 3. a **new linear-time decoding algorithm** (graph \rightarrow integer key) simpler, marginally faster and able to retrieve the correct key even after the malicious removal of $k \le 2$ edges
- 4. a **tight bound for the resilience of the codec** against edge removals

Characterizing the watermark graphs

(canonical reducible permutation graphs)

Theorem (characterization)

Canonical reducible permutation graph

Self-labeling reducible flow graph such that:

- its fixed element is 2n+1, and its representative tree is a "type-1" tree or
- its fixed element belongs to [n+2, 2n], and its representative tree is a "type-2" tree

Characterizing the watermark graphs

(canonical reducible permutation graphs)

Theorem (characterization)

Canonical reducible permutation graph

Self-labeling reducible flow graph such that:

- its fixed element is 2n+1, and its representative tree is a "type-1" tree or
- its fixed element belongs to [n+2, 2n], and its representative tree is a "type-2" tree

Types of representative trees

type-1

- (i) $n+1, n+2, \ldots, 2n+1$ are children of the root 2n+2 in T; and
- (ii) $1, 2, \ldots, n$ are children of 2n.

type-2

- (i) $n + 1 = x_1 < x_2 < \ldots < x_\ell = 2n + 1$ are the children of 2n + 2, for some $\ell \in [2, n 1]$;
- (ii) $x_i > x_{i+1}$ and x_i is the parent of x_{i+1} , for all $i \in [\ell, n-1]$;
- (iii) $1, 2, \ldots, f n 1$ are children of x_n ;
- (iv) $x_i = n + i$, for $1 \le i \le f n 1$;
- (v) f is a child of x_q , for some $q \in [\ell, n]$ satisfying $x_{q+1} < f$ whenever q < n; and
- (vi) $N_T^*(f) = \{f n, f n + 1, \dots, n\}$ and $y_i \in N_T^*(f)$ has index $x_{y_i} f + 1$ in the preorder traversal of $N_T^*(f)$.

(f denotes the unique fixed element)

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Linear-time recognition

Due to the characterization theorem, it is an easy task to recognize a canonical reducible permutation graph.... provided we have the vertex labels!

Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

```
Procedure 1: Reconstructing the Hamiltonian path
V_0 \leftarrow \{v \in V(G') \text{ s.t. } |N_{G'}^+| = 0\}; V_1 \leftarrow \{v \in V(G') \text{ s.t. } |N_{G'}^+| = 1\}
if |V_0| = 1 then
     let v_0 be the unique element in V_0
     if |H(v_0)| = 2n + 3 then H \leftarrow H(v_0), return H
     else if \exists v_1 \in V_1 such that |H(v_0)| + |H(v_1)| = 2n + 3 then
         H \leftarrow H(v_1)||H(v_0), \text{ return } H
     else
         let v_1, v_1' \in V_1 be such that
             |H(v_0)| + |H(v_1)| + |H(v_1')| = 2n + 3 and N_{G'}^+(first(H(v_1)) \cap H(v_1') \neq \emptyset
         H \leftarrow H(v_1')||H(v_1)||H(v_0), return H
else
     let v_0, v'_0 be the elements in V_0
     if |H(v_0)| + |H(v_0')| = 2n + 3 then
         let v_0 be such that N_{G'}^+(first(H(v_0))) \cap H(v_0') \neq \emptyset
         H \leftarrow H(v_0')||H(v_0), \text{ return } H
     else
         let v_0' \in V_0 and v_1 \in V_1 be such that v_0' \in N_{G'}^+(first(H(v_1)))
         H \leftarrow H(v_0')||H(v_1)||H(v_0), \text{ return } H
```

Linear-time recognition

```
Procedure 1: Reconstructing the Hamiltonian path
V_0 \leftarrow \{v \in V(G') \text{ s.t. } |N_{G'}^+| = 0\}; V_1 \leftarrow \{v \in V(G') \text{ s.t. } |N_{G'}^+| = 1\}
if |V_0| = 1 then
     let v_0 be the unique element in V_0
     if |H(v_0)| = 2n + 3 then H \leftarrow H(v_0), return H
     else if \exists v_1 \in V_1 such that |H(v_0)| + |H(v_1)| = 2n + 3 then
         H \leftarrow H(v_1)||H(v_0), \mathbf{return} H
     else
         let v_1, v_1' \in V_1 be such that
             |H(v_0)| + |H(v_1)| + |H(v_1')| = 2n + 3 and N_{G'}^+(first(H(v_1)) \cap H(v_1') \neq \emptyset
         H \leftarrow H(v_1')||H(v_1)||H(v_0), return H
else
     let v_0, v'_0 be the elements in V_0
     if |H(v_0)| + |H(v_0')| = 2n + 3 then
         let v_0 be such that N_{G'}^+(first(H(v_0))) \cap H(v_0') \neq \emptyset
         H \leftarrow H(v_0')||H(v_0), \text{ return } H
     else
         let v_0' \in V_0 and v_1 \in V_1 be such that v_0' \in N_{G'}^+(first(H(v_1)))
         H \leftarrow H(v_0')||H(v_1)||H(v_0), \text{ return } H
```


Our contribution

- 1. **formal definition of the class** of *canonical reducible permutation graphs* (precisely the graphs produced by Chroni and Nikolopoulos's encoding algorithm)
- 2. characterization and linear-time recognition algorithm for such graphs
- 3. a **new linear-time decoding algorithm** (graph \rightarrow integer key) simpler, marginally faster and able to retrieve the correct key even after the malicious removal of $k \le 2$ edges
- 4. a **tight bound for the resilience of the codec** against edge removals

- 1. find the unique Hamiltonian path and label the vertices accordingly
- 2. find the fixed element *f*
- 3. find the set A of the child nodes of the root of the representative tree that are different from 2n+1
- 4. calculate the key as follows

- 1. find the unique Hamiltonian path and label the vertices accordingly
- 2. find the fixed element *f*
- 3. find the set A of the child nodes of the root of the representative tree that are different from 2n+1
- 4. calculate the key as follows

- 1. find the unique Hamiltonian path and label the vertices accordingly
- 2. find the fixed element *f*
- 3. find the set A of the child nodes of the root of the representative tree that are different from 2n+1
- 4. calculate the key as follows

- find the unique Hamiltonian path and label the vertices accordingly
- 2. find the fixed element *f*
- 3. find the set A of the child nodes of the root of the representative tree that are different from 2n+1
- 4. calculate the key as follows

Procedure 2: Finding $f \neq 2n+1$

- 1. If F contains a large vertex x having a sibling z then let $f \leftarrow max\{x, z\}$ and terminate the algorithm. Otherwise,
- For each large vertex x of F satisfying N_F(x) ≠ ∅ and each small y ∈ N_F(x), let Y' = {x n, x n + 1,...,n}. If N_F*(x) = Y' or N_F*(x) ⊂ Y', and Y' \ N_F*(x) is the vertex set of one of the trees of F, then let f ← x and terminate the algorithm. Otherwise,
- Find the preorder traversals of the three trees of F, and then let f be the unique vertex that is both large and the rightmost element of the preorder traversal of some tree of F.

- 1. find the unique Hamiltonian path and label the vertices accordingly
- 2. find the fixed element *f*
- 3. find the set A of the child nodes of the root of the representative tree that are different from 2n+1
- 4. calculate the key as follows

Procedure 2: Finding $f \neq 2n+1$

- If F contains a large vertex x having a sibling z
 then let f ← max{x, z} and terminate the algorithm. Otherwise,
- 2. For each large vertex x of F satisfying $N_F(x) \neq \emptyset$ and each small $y \in N_F(x)$, let $Y' = \{x n, x n + 1, \dots, n\}$. If $N_F^*(x) = Y'$ or $N_F^*(x) \subset Y'$, and $Y' \setminus N_F^+(x)$ is the vertex set of one of the trees of F, then let $f \leftarrow x$ and terminate the algorithm. Otherwise,
- Find the preorder traversals of the three trees of F, and then let f be the unique vertex that is both large and the rightmost element of the preorder traversal of some tree of F.

- 1. find the unique Hamiltonian path and label the vertices accordingly
- 2. find the fixed element *f*

- 3. find the set A of the child nodes of the root of the representative tree that are different from 2n+1
- 4. calculate the key as follows

Procedure 3: Constructing the set of large ascending vertices

- 1. If $F[X_c] \cup \{2n+2\}$ is connected then $A \leftarrow N_F(2n+2)$ and terminate the algorithm. Otherwise,
- 2. If $F[X_c] \cup \{2n+2\}$ contains no isolated vertices then $A \leftarrow N_F(2n+2) \cup \{2n+1\}$ and terminate the algorithm. Otherwise,
- 3. If $F[X_c] \cup \{2n+2\}$ contains two isolated vertices x, x' then $A \leftarrow N_F(2n+2) \cup \{x, x'\}$ and terminate the algorithm. Otherwise,
- 4. If $F[X_c] \cup \{2n+2\}$ contains a unique isolated vertex x then if $|N_F^*(f)| = 2n f + 1$ then let y_r be the rightmost vertex of $N_F^*(f)$ if $|N_F(2n+2)| < y_r$ then $A \leftarrow N_F(2n+2) \cup \{x, 2n+1\}$ else $A \leftarrow N_F(2n+2) \cup \{x\}$

- 1. find the unique Hamiltonian path and label the vertices accordingly
- 2. find the fixed element *f*

- 3. find the set A of the child nodes of the root of the representative tree that are different from 2n+1
- 4. calculate the key as follows

Procedure 3: Constructing the set of large ascending vertices

- 1. If $F[X_c] \cup \{2n+2\}$ is connected then $A \leftarrow N_F(2n+2)$ and terminate the algorithm. Otherwise,
- 2. If $F[X_c] \cup \{2n+2\}$ contains no isolated vertices then $A \leftarrow N_F(2n+2) \cup \{2n+1\}$ and terminate the algorithm. Otherwise,
- 3. If $F[X_c] \cup \{2n+2\}$ contains two isolated vertices x, x' then $A \leftarrow N_F(2n+2) \cup \{x, x'\}$ and terminate the algorithm. Otherwise,

with $k \le 2$

missing edges

4. If $F[X_c] \cup \{2n+2\}$ contains a unique isolated vertex x then if $|N_F^*(f)| = 2n - f + 1$ then let y_r be the rightmost vertex of $N_F^*(f)$ if $|N_F(2n+2)| < y_r$ then $A \leftarrow N_F(2n+2) \cup \{x, 2n+1\}$ else $A \leftarrow N_F(2n+2) \cup \{x\}$

- 1. find the unique Hamiltonian path and label the vertices accordingly
- 2. find the fixed element *f*
- 3. find the set A of the child nodes of the root of the representative tree that are different from 2n+1
- 4. calculate the key as follows

- 1. find the unique Hamiltonian path and label the vertices accordingly
- 2. find the fixed element *f*
- 3. find the set A of the child nodes of the root of the representative tree that are different from 2n+1
- 4. calculate the key as follows

Experimental results

n bits	former alg.	our alg.	our alg. (-1 edge)	our alg. (-2 edges)
5	82.2 (4.4) μs	56.5 (3.2) μs	63.9 (6.7) μs	78.0 (16.4) μs
10	132.3 (9.3) μ s	95.7 (5.8) μs	104.2 (9.4) μs	122.8 (24.8) μs
20	240.9 (11.8) μs	177.5 (9.7) μs	190.7 (17.4) μs	219.9 (44.9) μs
30	357.7 (14.4) μs	268.9 (13.2) μs	281.3 (18.2) μs	328.1 (66.0) μs
100	1406.7 (45.7) μs	1135.4 (39.5) μs	1151.2 (89.8) μs	1248.5 (260.4) μs

average time (standard deviation)

Our contribution

- 1. **formal definition of the class** of *canonical reducible permutation graphs* (precisely the graphs produced by Chroni and Nikolopoulos's encoding algorithm)
- 2. characterization and linear-time recognition algorithm for such graphs
- 3. a **new linear-time decoding algorithm** (graph \rightarrow integer key) simpler, marginally faster and able to retrieve the correct key even after the malicious removal of $k \le 2$ edges
- 4. a **tight bound for the resilience of the codec** against edge removals

For n > 2 bits, it is possible to detect up to 5 edge insertions/deletions in polynomial time. **This bound is tight.**

Danke schön!

Vinícius Gusmão Pereira de Sá Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil vigusmao@dcc.ufrj.br

Towards a provably resilient scheme for graph-based watermarking

Lucila Maria Souza Bento
Davidson Boccardo
Raphael Carlos Santos Machado
Vinícius Gusmão Pereira de Sá
Jayme Luiz Szwarcfiter

