Towards a provably resilient scheme for
graph-based watermarking

Lucila Maria Souza Bento
Davidson Boccardo
Raphael Carlos Santos Machado
= Vinicius Gusmao Pereira de Sa
Jayme Luiz Szwarcfiter

e
<

UNIVERSIDADE
FEDERAL DO
RIO DE JANEIRO

UFR]

CX 00000000 7

K1l

Watermarks ey - o T

Watermarks

e50uPeed-«aLen

Watermarks

N A T /l"
CX 00000000 T ﬂlu‘gmn&nmm
& 3 .

x
b
—

ErecIven

GK0000000N
,',Au«i..

c——e

»

Software watermarking

Software watermarking

int fibonnaci (int n) {
inta=1,b=1;

for (inti=1;i<n;i++){
intsum =a+b;
a=b;
b =sum;

}

return b;

Software watermarking

int fibonnaci (int n) {
inta=1,b=1;

for (inti=1;i<n;i++){
intsum =a+b;
a=b;
b =sum;

}

// author: Vinicius

return b;

Software watermarking

int fibonnaci (int n) {
inta=1,b=1;
string author = “Vinicius”;
for (inti=1;i<n;i++){
intsum =a+b;

a=b;

b =sum;
}
return b;

Graph-based software watermarking

int fibonnaci (int n) { Control flow graph 0358334 o006

inta=1,b=1;

0x0()82
0x0086

for (inti=1;i<n;i++){
intsum=a+b;
a=b;
b =sum;

}

Davidson and Myhrvold (1996)
return b; Venkatesan, Vazirani and Sinha (2001)
} Collberg et al. (WG 2003)

Graph-based software watermarking

int fibonnaci (int n) { Control flow graph 0358334 o006

inta=1,b=1;

0x0()82
0x0086

for (inti=1;i<n;i++){
intsum=a+b;

a=b; ,
} b =sum; l
Davidson and Myhrvold (1996)
return b; Venkatesan, Vazirani and Sinha (2001)
} Collberg et al. (WG 2003)

“author: Vinicius”

Graph-based software watermarking

int fibonnaci (int n) { Control flow graph | %eoes | | %eceoos

inta=1,b=1;

for (inti=1;i<n;i++){
intsum=a+b;

a=b;
b =sum;
}
Davidson and Myhrvold (1996)
return b; Venkatesan, Vazirani and Sinha (2001)
} Collberg et al. (WG 2003)

“author: Vinicius”

(10010101000111010101001101011)

Graph-based software watermarking

int fibonnaci (int n) { Control flow graph | s | | %coe

inta=1,b=1;

for (inti=1;i<n;i++){
intsum=a+b;

a=b;
b =sum;
}
Davidson and Myhrvold (1996) ‘
return b; Venkatesan, Vazirani and Sinha (2001)
} Collberg et al. (WG 2003)

“author: Vinicius”

(10010101000111010101001101011)

!

Graph-based software watermarking

int fibonnaci (int n) { Control flow graph | s000s | | 620006
inta=1,b=1; l

for (inti=1;i<n;i++){
intsum=a+b;
a=b;
b =sum;

}

Ox008h
0x009(_

return b;

“author: Vinicius”

(10010101000111010101001101011)

!

Graph-based software watermarking

0x0000 - 0x0004 -

Control flow graph 0x0004 0x0006

0 0082 -
0x0086

0x0086
0x008b

Ox008h
0x009(_

(10010101000111010101001101011)

Graph-based software watermarking

Chroni and Nikolopoulos (2011)

Encoding

!

10010101000111010101001101011

i1

]

Decoding

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29
B = 11101 n=>5

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29
B =11101 n=5
B = 00010

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29
B =11101 n=5
B = 00010

\

B* = 11111 00010 0
i

n 1's

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29
B =11101 n=5
B = 00010

\

B* = 11111 00010 0
i

n 1's

Z, = 6,7,8,10, 11

N
|

=123,4,5,9

The codec from Chroni and Nikolopoulos

key w =29
B = 11101 n=>5
00010

\

B® = 11111 000100
S———

Su)
I

n 1's

Z, = 6,7,8,10,11

N
|

=123,4,5,9

Chroni and Nikolopoulos (2011)

Zy Z;°
i

[) | L
Pb = 6) 7} 8} 10) 11) 9’ 5’ 4’ 3’ 2’ 1

The codec from Chroni and Nikolopoulos

key

Su)
I

B* =

w =29
11101 n=5
00010

\

11111 000100

n 1's

6,7,8,10, 11

=123,4,5,9

Chroni and Nikolopoulos (2011)

Z, ZR
i

: \ \
P, =6,738,6 10,11, 9 5 4,3,2,1

(9 9)
(11 5)
(10,4)

(8,3) ——
(7,2)
(6,1)

The codec from Chroni and Nikolopoulos

key w =29
B = 11101 n=>5
00010

\

B® = 11111 000100
S———

Su)
I

n 1's

Z, = 6,7,8,10,11

N
|

=123,4,5,9

Chroni and Nikolopoulos (2011)

Zy Z;°
i

: \
P, =6,738,6 10,11, 9 5 4,3,2,1

(9 9)
(11 5)
(10,4)

(8,3) ——
(7,2)
(6,1)

I

O
I

=6,7,8,10,11,1,2,3,9,4,5

12 3 4 5 6 7 8 9 10 11

The codec from Chroni and Nikolopoulos

key w =29
B = 11101 n=>5
00010

\

B® = 11111 000100
S———

Su)
I

n 1's

Z, = 6,7,8,10,11

N
|

=123,4,5,9

Chroni and Nikolopoulos (2011)

Zy Z;°
i

: \ \
P, =6,738,6 10,11, 9 5 4,3,2,1

(9 9)
(11 5)
(10,4)

(8,3) ——
(7,2)
(6,1)

O
I

=6,7,81011,1,2,3,9,4,5

12 3 4 5 6 7 8|9 |0 11

|

fixed element

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29 Z, Z,R
i i
[|| |
B=11101 n=5 P, =6,78,10,11,9,5,4,3,2,1
B = 00010 P =6,781011,1,23,9 4,5

\ s

B® = 11111 000100
S———

n 1's

Z, = 6,7,8,10,11

N
|

=123,4,5,9

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29 Z, Z,R
i i
[| |
B=11101 n=5 P, =6,78,10,11,9,5,4,3,2,1
B = 00010 P =6,781011,1,23,9 4,5

S
\ 6,7,810,11,1,2,3,9,4,5

B® = 11111 000100
S———

n 1's

Z, = 6,7,8,10,11

N
|

=123,4,5,9

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29 Z, Z,R
J
I (| I
B = 11101 n=5 P, =678,1011,9,5,4,3,2,1
B = 00010 P.=6,7,810,11, 1,2, 3,9,4,5
\ 12, 6,7,8,10,11,1,2,3,9,4,5
B* = 11111 000100 1
‘—vr' 2n+2
n S

Z, = 6,7,8,10,11

N
|

=123,4,5,9

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29 Z, Z.R
|
[1 { |
B=11101 n=5 P, =6,78,10,11,9,5,4,3,2,1
B = 00010 P =6,781011,1,23,9 4,5

S
\ 12, 6,7,8,10,11,1,2,3,9,4,5

B® = 11111 000100

/

12 11 10 9 8 7 6 5 4 3 2 1 0

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29 Z, Z,R
|
[1 { |
B=11101 n=5 P, =6,78,10,11,9,5,4,3,2,1
B = 00010 P =6,781011,1,23,9 4,5

S
\ 12, 6,7,8,10,11,1,2,3,9,4,5

B® = 11111 000100
S———

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29 Z, Z.R
i
{ || i
B = 11101 n=5 P, =6,7,810,11,9,5,4,3,2,1
B = 00010 P.=6,7,810,11, 1,2, 3,9,4,5
\ 12, 6,7,8,10,11,1,2,3,9,4,5
B* = 11111 000100
T /
n 1’s

12 11 10 9 8 7 6 5 4 3 2 1 0

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29 Z, Z,R
i
{ || i
B = 11101 n=5 P, =6,7,810,11,9,5,4,3,2,1
B = 00010 P.=6,7,810,11, 1,2, 3,9,4,5
\ 12, 6,7,8,10,11,1,2,3,9,4,5
B* = 11111 000100
T /
n 1’s

12 11 10 9 8 7 6 5 4 3 2 1 0

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29 Z, Z,R
i
{ || i
B = 11101 n=5 P, =6,7,810,11,9,5,4,3,2,1
B = 00010 P.=6,7,810,11, 1,2, 3,9,4,5
X 12, 6,7,8,10,11,1,2,3,9,4,5
B* = 11111 000100
T /
n 1’s

12 11 10 9 8 7 6 5 4 3 2 1 0

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29 Z, Z,R
i
{ || i
B = 11101 n=5 P, =6,7,810,11,9,5,4,3,2,1
B = 00010 P.=6,7,810,11, 1,2, 3,9,4,5
\ 12, 6,7,8,10,11,1,2,3,9,4,5
B* = 11111 000100
T /
n 1’s

12 11 10 9 8 7 6 5 4 3 2 1 0

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29 Z, Z,R
i
{ || i
B = 11101 n=5 P, =6,7,810,11,9,5,4,3,2,1
B = 00010 P.=6,7,810,11, 1,2, 3,9,4,5
\ 12, 6,7,8,10,11,1,2,3,9,4,5
B* = 11111 000100
T /
n 1’s

The codec from Chroni and Nikolopoulos

The codec from Chroni and Nikolopoulos

Chroni and Nikolopoulos (2011)

key w =29 Z, Z,R
J
| (| I
B =11101 n=5 P, =6,78,10,11,9,5,4,3,2,1
B = 00010 P.=6,7,810,11, 1,2, 3,9,4,5
X 12, 6,7,8,10,11, 1,2,3,9,4,5
B* = 11111 00010 0
. /
n 1's

Our contribution

B.,B., M., S.,S. (WG 2013)

Our contribution

B.,B., M., S.,S. (WG 2013)

12 11 10 9 8 7 6 5 4 3 2 1 0

1. formal definition of the class of canonical reducible permutation graphs
(precisely the graphs produced by Chroni and Nikolopoulos’s encoding algorithm)

Canonical reducible permutation graphs

canonical
reducible
permutation

Canonical reducible permutation graphs

self-labeling
reducible flow graph

canonical
reducible
permutation

Canonical reducible permutation graphs

Definition
> Self-labeling reducible flow graph G(V,E):
e verticesO, ..., |V]|-1
e exactly one Hamiltonian path
« vinV\{0, |V|-1} = N*(v) ={v-1, w},
forsome w >v
v=0 = N*(v)={}
N-(v) = {1}
v=|V|-1 = N*v)={|V]-2}
IN"(v)| 22

self-labeling |
reducible flow graph

canonical
reducible
permutation

Canonical reducible permutation graphs

Canonical reducible permutation graphs

Canonical reducible permutation graphs

Canonical reducible permutation graphs

’
4
’
4

® 6 ° /@
7 6 5 4 3 2 1 %0

N

A

12 Representative tree

e children in ascending order
* max-heap property

12

Canonical reducible permutation graphs

’
4
’
4

/@
\
11 10 9 8 7 6 5 4 3 2 1 \\O

N

A

12 Representative tree

e children in ascending order
* max-heap property

root-free preorder traversal:
6,7,8,10,11,1,2,3,9,4,5

Canonical reducible permutation graphs

Definition
Canonical self-inverting permutation

a self-inverting permutation
elementss; =1, 2, ..., 2n+1

exactly one fixed element
each 2-cycle (s, s)) satisfies
1<isn,s;>s;

Canonical reducible permutation graphs

self-labeling
reducible flow graph o
Definition
Canonical reducible permutation graph:
e aself-labeling reducible flow graph
* 2n+3 vertices
) * its representative tree has
a (root-free) preorder traversal
which is a canonical self-inverting
permutation

canonical
reducible |
permutation

Canonical reducible permutation graphs

Theorem
Watermark from Chroni and Nikolopoulos

|

Canonical reducible permutation graph

Canonical reducible permutation graphs

Theorem
Watermark from Chroni and Nikolopoulos

|

Canonical reducible permutation graph

(Proof by “we don’t want to know the details” argument)

Canonical reducible permutation graphs

key w =29
B = 11101 n=>5

Su)
I

00010

N\

B® = 11111 000100
S———

n 1's

Chroni and Nikolopoulos (2011)

Zy Z;°
i

() | [
P,=6,7,810,11,9,5,4,3,2,1

P.= 6; 7; 8) 101 11' 1’ 2’ 3’ 9’ 4'5

several structural
properties

Codec properties

Property 1 Forl <i < n, element bn+iy1 in Py is equal to n — i+ 1, that s, the n rightmost
elements in Py, are 1,2,...,n when read from right to left.

Property 2 The elements whose indezes are 1,2,...,n in P, are all greater than n.

Property 3 The fized element f satisfies f = n + f, unless the key w is equal to 2 — 1 for
some integer k, whereupon f =n* =2n+ 1.

Property 4 In self-inverting permutation Ps, elements indezed 1,2,...,f —n — 1 are respec-
twely equal ton+1,n+2,..., f—1, and elements indezed n+1,n+2,..., f —1 are respectively
equal to 1,2,...,f —n— 1.

Property 5 The first element in P is s$1 = n+ 1, and the central element in P; is sp+1 = 1.

Property 6 If f # n*, then the index of element n* in P, is equal to n, + 1, and vice-versa.
If f =n*, then the index of element n* in P is also n*.

Property 7 The subsequence of P, consisting of elements indezed 1,2,...,n+ 1 is bitonic.

Property 8 For u # 2n+ 1, (u,2n + 2) is a tree edge of watermark G if, and only if, u —n
is the index of a digit 1 in the binary representation B of the key w represented by G.

Property 9 If (u,k) is a tree edge of watermark G, with k # 2n + 2, then (i) element k
precedes u in Py; and (i) if v is located somewhere between k and u in P, then v < u.

Canonical reducible permutation graphs

Theorem
Watermark from Chroni and Nikolopoulos

|

Canonical reducible permutation graph

(Proof by “we don’t want to know the details” argument) J

Our contribution

B.,B., M., S.,S. (WG 2013)

12 11 10 9 8 7 6 5 4 3 2 1 0

1. formal definition of the class of canonical reducible permutation graphs
(precisely the graphs produced by Chroni and Nikolopoulos’s encoding algorithm)

2. characterization and linear-time recognition algorithm for such graphs

Characterizing the watermark graphs

(canonical reducible permutation graphs)

Theorem (characterization)
Canonical reducible permutation graph

|

Self-labeling reducible flow graph such that:
* ts fixed element is 2n+1, and
its representative tree is a “type-1” tree
or
* jts fixed element belongs to [n+2, 2n], and
its representative tree is a “type-2” tree

Characterizing the watermark graphs

(canonical reducible permutation graphs)

Theorem (characterization)
Canonical reducible permutation graph

|

Self-labeling reducible flow graph such that:
* ts fixed element is 2n+1, and
its representative tree is a “type-1” tree
or
* jts fixed element belongs to [n+2, 2n], and
its representative tree is a “type-2” tree

2n+2

type-1 rep. tree

e

ntl nt2

2nt+2

X1

2n 2n+l1

7N~

type-2 rep. tree

X, -

x, =2n+1
|

Xis1

Xq

Types of representative trees

type-l 2n+2
(i) n+1,n+2,...,2n+ 1 are children of the root 2n + 2 in T'; and // ’ \\

n+l nt2 2n 2n+l

(ii) 1,2,...,n are children of 2n. 1/2/ N
type-2

i) n+1l=2z; <z <...<zy=2n+1 are the children of 2n + 2, for some £ € [2,n — 1];
(ii) z; > x;+1 and z; is the parent of z;.,, for all i € [{,n — 1];
(iii) 1,2,...,f —n — 1 are children of z,;
(iv) z; =n+i,for 1 <i< f—n—1;
(v) fis a child of z,, for some ¢ € [¢,n| satisfying z,.; < f whenever ¢ < n; and
(vi) Np(f)={f—n,f—n+1,...,n} and y; € N;(f) has index z,, — f + 1 in the preorder
traversal of Nj[f].

2n+2) ;
denotes the unique fixed element
// \ (f q)
X

X x, =2n+1

|
X

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

12 11 10 9 8 7 6 5 4 3 2 1 0

Due to the characterization theorem, it is an easy task to recognize
a canonical reducible permutation graph.... provided we have the vertex labels!

|:> Linear-time algorithm to find the unique Hamiltonian path

Linear-time recognition

Procedure 1: Reconstructing the Hamiltonian path
Vo — {v e V(G') s.t. INL|=0}; Vi {veV(G)st. [N =1}
if |V;| = 1 then
let vy be the unique element in Vj
if |[H(vy)| = 2n + 3 then H + H(v), return H
else if 3 v; € Vj such that |H(v)| + |H(v:)| = 2n + 3 then
H + H(v,)||H(vy), return H
else
let v,,v] € V| be such that
|H (vo)| + |H (v1)| + |H(vh)| = 2n + 3 and Ng,(first(H(vi)) N H(v}) # 0
H « H(v))||H(v,)||H(vg), return H
else
let vy, v, be the elements in V}
if |H(w)|+ |H(vy)| = 2n+ 3 then
let v, be such that N, (first(H (vp))) N H(vh) # 0
H « H(v})||H(vy), return H
else
let v, € Vj and vy € Vi be such that vj € N (first(H(v1))
H + H(vy)||H(v1)||H(vo), return H

Linear-time recognition

Procedure 1: Reconstructing the Hamiltonian path
Vo — {v e V(G') s.t. INL|=0}; Vi {veV(G)st. [N =1}
if |V;| = 1 then
let vy be the unique element in Vj
if |H(vy)| = 2n + 3 then H + H(v,), return H
else if 3 v; € V such that |H(v)| + |H(v1)| = 2n + 3 then
H + H(v,)||H(vy), return H
else
let v,,v] € V| be such that
|H (vo)| + |H (v1)| + |H(v})| = 2n + 3 and NG (first(H (vi)) N H(v}) # 0
H « H(v))||H(v,)||H(vg), return H
else
let vy, v, be the elements in V}
if |H(w)|+ |H(vy)| = 2n+ 3 then

let v, be such that N/, (first(H(vy))) N H(vp) # @
H « H(v})||H(vy), return H

else
let v, € Vj and vy € Vi be such that vj € N (first(H(v1)) with k<2

H « H(vy)||H (v1)||H(vo), return H ..
(vo)||H (v1)|| H (vo) missing edges

Our contribution

B.,B., M., S.,S. (WG 2013)

12 11 10 9 8 7 6 5 4 3 2 1 0

1. formal definition of the class of canonical reducible permutation graphs
(precisely the graphs produced by Chroni and Nikolopoulos’s encoding algorithm)

2. characterization and linear-time recognition algorithm for such graphs

3. anew linear-time decoding algorithm (graph = integer key)

simpler, marginally faster and able to retrieve the correct key even after the
malicious removal of k < 2 edges

N

A new decoding algorithm

find the unique Hamiltonian path and label the vertices accordingly
find the fixed element f

find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

calculate the key as follows

12 Representative tree

11 =2n+1

N

A new decoding algorithm

find the unique Hamiltonian path and label the vertices accordingly
find the fixed element f

find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

calculate the key as follows

12 Representative tree

11 =2n+1

A new decoding algorithm

find the unique Hamiltonian path and label the vertices accordingly

N

find the fixed element f
find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

calculate the key as follows

with k <2
missing edges

A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly

find the fixed element f

3. find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

4. calculate the key as follows

:

Procedure 2: Finding f #2n+1

1. If F contains a large vertex = having a sibling 2
then let f « maxz{z, 2} and terminate the algorithm. Otherwise,

2. For each large vertex z of F satisfying N (z) # (0 and each small y € Ny (z),
let Y ={z—n,z—n+1,...,n}. f Ni(z)=Y"or Nj(z) CY’,
and Y’ \ N (z) is the vertex set of one of the trees of F,
then let f + z and terminate the algorithm. Otherwise,

3. Find the preorder traversals of the three trees of F', and
then let f be the unique vertex that is both large and the rightmost element
of the preorder traversal of some tree of F.

A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly

. find the fixed element f

3. find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

:

4. calculate the key as follows

with k<2

Procedure 2: Finding f # 2n+1 missing edges

1. If F contains a large vertex = having a sibling 2
then let f + maxz{z, 2} and terminate the algorithm. Otherwise,
2. For each large vertex z of F satisfying N (z) # (0 and each small y € Ny (z),
let Y ={z—n,z—n+1,...,n}. f Ni(z)=Y"or Nj(z) CY’,
and Y’ \ N, (z) is the vertex set of one of the trees of F,
then let f + z and terminate the algorithm. Otherwise,
3. Find the preorder traversals of the three trees of F', and
then let f be the unique vertex that is both large and the rightmost element
of the preorder traversal of some tree of F'.

A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly

find the fixed element f

me 3. find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

4. calculate the key as follows

N

Procedure 3: Constructing the set of large ascending vertices

1. If F[X,]U{2n + 2} is connected then A « Ny(2n + 2)
and terminate the algorithm. Otherwise,
2. If F[X,.] U {2n + 2} contains no isolated vertices then A < Np(2n+2) U {2n + 1}
and terminate the algorithm. Otherwise,
3. If F[X,]U {2n + 2} contains two isolated vertices z,z’ then A + Np(2n + 2) U {z,z’}
and terminate the algorithm. Otherwise,
4. If F[X,.]U{2n + 2} contains a unique isolated vertex = then
if IN;:(f)| =2n — f+ 1 then
let y,. be the rightmost vertex of Nj.(f)
if |INp(2n+2)| <y, then A « Np(2n+2) U{z,2n+ 1}
else A+ Np(2n + 2)
else A — Np(2n+2) U {z}

A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly
find the fixed element f
me 3. find the set A of the child nodes of the root of the representative tree

N

that are different from 2n+1
4. calculate the key as follows

with k<2

Procedure 3: Constructing the set of large ascending vertices

1. If F[X.] U {2n + 2} is connected then A « Ny(2n + 2) missing edges

and terminate the algorithm. Otherwise,
2. If F[X,.]U{2n + 2} contains no isolated vertices then A + Np(2n+2)U {2n+ 1}
and terminate the algorithm. Otherwise,
3. If F{X,|U{2n + 2} contains two isolated vertices z,z’ then A « Np(2n +2)U {z,z'}
and terminate the algorithm. Otherwise,
4. If F[X,.]U{2n + 2} contains a unique isolated vertex = then
if IN;(f)| =2n — f+ 1 then
let y, be the rightmost vertex of Nj.(f)
if [INp(2n+2)| <y, then A + Np(2n+2) U {z,2n + 1}
else A+ Np(2n + 2)
else A — Np(2n+2)U {z}

A new decoding algorithm

N

find the unique Hamiltonian path and label the vertices accordingly
find the fixed element f

find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

calculate the key as follows

with k<2
missing edges

N

A new decoding algorithm

find the unique Hamiltonian path and label the vertices accordingly
find the fixed element f
find the set A of the child nodes of the root of the representative tree
that are different from 2n+1
calculate the key as follows

Experimental results

n bits former alg. our alg. our alg. (-1 edge) | our alg. (-2 edges)
5 82.2 (4.4) us 56.5 (3.2) us 63.9 (6.7) us 78.0 (16.4) us
10 132.3 (9.3) us 95.7 (5.8) us 104.2 (9.4) us 122.8 (24.8) us
20 240.9 (11.8) us 177.5 (9. 7) us | 190.7 (17.4) us 219.9 (44.9) us
30 357.7 (14.4) us | 268.9 (13.2) us | 281.3 (18.2) us 328.1 (66.0) us

100 |[1406.7)45.7) s | 1135.4 (39.5) ps | 1151.2 (89.8) pis |[1248.5/(260.4) pis

average time (standard deviation)

Our contribution

B.,B., M., S.,S. (WG 2013)

12 11 10 9 8 7 6 5 4 3 2 1 0

1. formal definition of the class of canonical reducible permutation graphs
(precisely the graphs produced by Chroni and Nikolopoulos’s encoding algorithm)

2. characterization and linear-time recognition algorithm for such graphs
3. anew linear-time decoding algorithm (graph = integer key)

simpler, marginally faster and able to retrieve the correct key even after the
malicious removal of k < 2 edges

4. atight bound for the resilience of the codec against edge removals

Resilience against edge modifications

e U

wW=3 [B=11)

Resilience against edge modifications

W =2 (B=10 (6)

3 2 D—(0) 909

wW=3 [B=11)

(6)
@:‘ >(5 4 >(3 >(2 1 {>@ 9
& o

Resilience against edge modifications

W=2 (=10 (6)
(3 (S (3 ©
3 2 D—(0) @ zi

w=3 @B-11)

‘ (6) (6)
Q. >(5 " >(3 D>(2 1 {>@ 9 ooe
$ o @

Resilience against edge modifications

W =2 (B=10 (6)
(3 (5
3 D—+(D—© ® @
w=3 @B-11)
(6) (6)

For n > 2 bits, it is possible to detect up to 5 edge insertions/deletions in polynomial time.
This bound is tight.

Danke schon!

Vinicius Gusmao Pereira de Sa
Universidade Federal do Rio de Janeiro
Rio de Janeiro, Brazil
vigusmao@dcc.ufrj.br

Towards a provably resilient scheme for
graph-based watermarking

Lucila Maria Souza Bento
Davidson Boccardo
Raphael Carlos Santos Machado
=> Vinicius Gusmao Pereira de Sa
Jayme Luiz Szwarcfiter

e
<

UNIVERSIDADE
FEDERAL DO
RIO DE JANEIRO

UFR]

