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int fibonnaci (int n) {
inta=1,b=1;

for (inti=1;i<n;i++){
intsum =a+b;
a=b;
b =sum;

}

return b;
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Software watermarking

int fibonnaci (int n) {
inta=1,b=1;
string author = “Vinicius”;
for (inti=1;i<n;i++){
intsum =a+b;

a=b;

b =sum;
}
return b;
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} Collberg et al. (WG 2003)




Graph-based software watermarking

int fibonnaci (int n) { Control flow graph 0358334 o006

inta=1,b=1;

0x0()82
0x0086

for (inti=1;i<n;i++){
intsum=a+b;

a=b; ,
} b =sum; l
Davidson and Myhrvold (1996)
return b; Venkatesan, Vazirani and Sinha (2001)
} Collberg et al. (WG 2003)

“author: Vinicius”




Graph-based software watermarking

int fibonnaci (int n) { Control flow graph | %eoes | | %eceoos

inta=1,b=1;

for (inti=1;i<n;i++){
intsum=a+b;

a=b;
b =sum;
}
Davidson and Myhrvold (1996)
return b; Venkatesan, Vazirani and Sinha (2001)
} Collberg et al. (WG 2003)

“author: Vinicius”

(10010101000111010101001101011)




Graph-based software watermarking

int fibonnaci (int n) { Control flow graph | s | | %coe

inta=1,b=1;

for (inti=1;i<n;i++){
intsum=a+b;

a=b;
b =sum;
}
Davidson and Myhrvold (1996) ‘
return b; Venkatesan, Vazirani and Sinha (2001)
} Collberg et al. (WG 2003)

“author: Vinicius”

(10010101000111010101001101011)

!




Graph-based software watermarking

int fibonnaci (int n) { Control flow graph | s000s | | 620006
inta=1,b=1; l

for (inti=1;i<n;i++){
intsum=a+b;
a=b;
b =sum;

}
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Graph-based software watermarking

Chroni and Nikolopoulos (2011)
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Canonical reducible permutation graphs

Definition
> Self-labeling reducible flow graph G(V,E):
e verticesO, ..., |V]|-1
e exactly one Hamiltonian path
« vinV\{0, |V|-1} = N*(v) ={v-1, w},
forsome w >v
v=0 = N*(v)={}
N-(v) = {1}
v=|V|-1 = N*v)={|V]-2}
IN"(v)| 22

self-labeling |
reducible flow graph

canonical
reducible
permutation
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Canonical reducible permutation graphs
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A

12 Representative tree

e children in ascending order
* max-heap property

root-free preorder traversal:
6,7,8,10,11,1,2,3,9,4,5



Canonical reducible permutation graphs

Definition
Canonical self-inverting permutation

a self-inverting permutation
elementss; =1, 2, ..., 2n+1

exactly one fixed element
each 2-cycle (s, s)) satisfies
1<isn,s;>s;



Canonical reducible permutation graphs

self-labeling
reducible flow graph o
Definition
Canonical reducible permutation graph:
e aself-labeling reducible flow graph
* 2n+3 vertices
) * its representative tree has
a (root-free) preorder traversal
which is a canonical self-inverting
permutation

canonical
reducible |
permutation




Canonical reducible permutation graphs

Theorem
Watermark from Chroni and Nikolopoulos
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(Proof by “we don’t want to know the details” argument)



Canonical reducible permutation graphs

key w =29
B = 11101 n=>5

Su)
I

00010

N\

B® = 11111 000100
S———

n 1's

Chroni and Nikolopoulos (2011)

Zy Z;°
i

( ) | [
P,=6,7,810,11,9,5,4,3,2,1

P.= 6; 7; 8) 101 11' 1’ 2’ 3’ 9’ 4'5

several structural
properties




Codec properties

Property 1 Forl <i < n, element bn+iy1 in Py is equal to n — i+ 1, that s, the n rightmost
elements in Py, are 1,2,...,n when read from right to left.

Property 2 The elements whose indezes are 1,2,...,n in P, are all greater than n.

Property 3 The fized element f satisfies f = n + f, unless the key w is equal to 2 — 1 for
some integer k, whereupon f =n* =2n+ 1.

Property 4 In self-inverting permutation Ps, elements indezed 1,2,...,f —n — 1 are respec-
twely equal ton+1,n+2,..., f—1, and elements indezed n+1,n+2,..., f —1 are respectively
equal to 1,2,...,f —n— 1.

Property 5 The first element in P is s$1 = n+ 1, and the central element in P; is sp+1 = 1.

Property 6 If f # n*, then the index of element n* in P, is equal to n, + 1, and vice-versa.
If f =n*, then the index of element n* in P is also n*.

Property 7 The subsequence of P, consisting of elements indezed 1,2,...,n+ 1 is bitonic.

Property 8 For u # 2n+ 1, (u,2n + 2) is a tree edge of watermark G if, and only if, u —n
is the index of a digit 1 in the binary representation B of the key w represented by G.

Property 9 If (u,k) is a tree edge of watermark G, with k # 2n + 2, then (i) element k
precedes u in Py; and (i) if v is located somewhere between k and u in P, then v < u.



Canonical reducible permutation graphs

Theorem
Watermark from Chroni and Nikolopoulos

|

Canonical reducible permutation graph

(Proof by “we don’t want to know the details” argument) J
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12 11 10 9 8 7 6 5 4 3 2 1 0

1. formal definition of the class of canonical reducible permutation graphs
(precisely the graphs produced by Chroni and Nikolopoulos’s encoding algorithm)

2. characterization and linear-time recognition algorithm for such graphs




Characterizing the watermark graphs

(canonical reducible permutation graphs)

Theorem (characterization)
Canonical reducible permutation graph

|

Self-labeling reducible flow graph such that:
* ts fixed element is 2n+1, and
its representative tree is a “type-1” tree
or
* jts fixed element belongs to [n+2, 2n], and
its representative tree is a “type-2” tree




Characterizing the watermark graphs

(canonical reducible permutation graphs)

Theorem (characterization)
Canonical reducible permutation graph

|

Self-labeling reducible flow graph such that:
* ts fixed element is 2n+1, and
its representative tree is a “type-1” tree
or
* jts fixed element belongs to [n+2, 2n], and
its representative tree is a “type-2” tree

2n+2

type-1 rep. tree

e

ntl nt2

2nt+2

X1

2n  2n+l1

7N~

type-2 rep. tree

X, -

x, =2n+1
|

Xis1

Xq




Types of representative trees

type-l 2n+2
(i) n+1,n+2,...,2n+ 1 are children of the root 2n + 2 in T'; and // ’ \\

n+l nt2 2n  2n+l

(ii) 1,2,...,n are children of 2n. 1/2/ N
type-2

i) n+1l=2z; <z <...<zy=2n+1 are the children of 2n + 2, for some £ € [2,n — 1];
(ii) z; > x;+1 and z; is the parent of z;.,, for all i € [{,n — 1];
(iii) 1,2,...,f —n — 1 are children of z,;
(iv) z; =n+i,for 1 <i< f—n—1;
(v) fis a child of z,, for some ¢ € [¢,n| satisfying z,.; < f whenever ¢ < n; and
(vi) Np(f)={f—n,f—n+1,...,n} and y; € N;(f) has index z,, — f + 1 in the preorder
traversal of Nj[f].

2n+2 ) ;
denotes the unique fixed element
// \ (f q )
X

X x, =2n+1

|
X
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Linear-time recognition

Procedure 1: Reconstructing the Hamiltonian path
Vo — {v e V(G') s.t. INL|=0}; Vi {veV(G)st. [N =1}
if |V;| = 1 then
let vy be the unique element in Vj
if |[H(vy)| = 2n + 3 then H + H(v), return H
else if 3 v; € Vj such that |H(v)| + |H(v:)| = 2n + 3 then
H + H(v,)||H(vy), return H
else
let v,,v] € V| be such that
|H (vo)| + |H (v1)| + |H(vh)| = 2n + 3 and Ng,(first(H(vi)) N H(v}) # 0
H « H(v))||H(v,)||H(vg), return H
else
let vy, v, be the elements in V}
if |H(w)|+ |H(vy)| = 2n+ 3 then
let v, be such that N, (first(H (vp))) N H(vh) # 0
H « H(v})||H(vy), return H
else
let v, € Vj and vy € Vi be such that vj € N (first(H(v1))
H + H(vy)||H(v1)||H(vo), return H




Linear-time recognition

Procedure 1: Reconstructing the Hamiltonian path
Vo — {v e V(G') s.t. INL|=0}; Vi {veV(G)st. [N =1}
if |V;| = 1 then
let vy be the unique element in Vj
if |H(vy)| = 2n + 3 then H + H(v,), return H
else if 3 v; € V such that |H(v)| + |H(v1)| = 2n + 3 then
H + H(v,)||H(vy), return H
else
let v,,v] € V| be such that
|H (vo)| + |H (v1)| + |H(v})| = 2n + 3 and NG (first(H (vi)) N H(v}) # 0
H « H(v))||H(v,)||H(vg), return H
else
let vy, v, be the elements in V}
if |H(w)|+ |H(vy)| = 2n+ 3 then

let v, be such that N/, (first(H(vy))) N H(vp) # @
H « H(v})||H(vy), return H

else
let v, € Vj and vy € Vi be such that vj € N (first(H(v1)) with k<2

H « H(vy)||H (v1)||H(vo), return H ..
(vo)||H (v1)|| H (vo) missing edges




Our contribution

B.,B., M., S.,S. (WG 2013)

12 11 10 9 8 7 6 5 4 3 2 1 0

1. formal definition of the class of canonical reducible permutation graphs
(precisely the graphs produced by Chroni and Nikolopoulos’s encoding algorithm)

2. characterization and linear-time recognition algorithm for such graphs

3. anew linear-time decoding algorithm (graph = integer key)

simpler, marginally faster and able to retrieve the correct key even after the
malicious removal of k < 2 edges
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A new decoding algorithm

find the unique Hamiltonian path and label the vertices accordingly
find the fixed element f

find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

calculate the key as follows

12 Representative tree

11 =2n+1
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A new decoding algorithm

find the unique Hamiltonian path and label the vertices accordingly

N

find the fixed element f
find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

calculate the key as follows

with k <2
missing edges




A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly

find the fixed element f

3. find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

4. calculate the key as follows

:

Procedure 2: Finding f #2n+1

1. If F contains a large vertex = having a sibling 2
then let f « maxz{z, 2} and terminate the algorithm. Otherwise,

2. For each large vertex z of F satisfying N (z) # (0 and each small y € Ny (z),
let Y ={z—n,z—n+1,...,n}. f Ni(z)=Y"or Nj(z) CY’,
and Y’ \ N (z) is the vertex set of one of the trees of F,
then let f + z and terminate the algorithm. Otherwise,

3. Find the preorder traversals of the three trees of F', and
then let f be the unique vertex that is both large and the rightmost element
of the preorder traversal of some tree of F.




A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly

. find the fixed element f

3. find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

:

4. calculate the key as follows

with k<2

Procedure 2: Finding f # 2n+1 missing edges

1. If F contains a large vertex = having a sibling 2
then let f + maxz{z, 2} and terminate the algorithm. Otherwise,
2. For each large vertex z of F satisfying N (z) # (0 and each small y € Ny (z),
let Y ={z—n,z—n+1,...,n}. f Ni(z)=Y"or Nj(z) CY’,
and Y’ \ N, (z) is the vertex set of one of the trees of F,
then let f + z and terminate the algorithm. Otherwise,
3. Find the preorder traversals of the three trees of F', and
then let f be the unique vertex that is both large and the rightmost element
of the preorder traversal of some tree of F'.




A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly

find the fixed element f

me 3. find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

4. calculate the key as follows

N

Procedure 3: Constructing the set of large ascending vertices

1. If F[X,]U{2n + 2} is connected then A « Ny(2n + 2)
and terminate the algorithm. Otherwise,
2. If F[X,.] U {2n + 2} contains no isolated vertices then A < Np(2n+2) U {2n + 1}
and terminate the algorithm. Otherwise,
3. If F[X,]U {2n + 2} contains two isolated vertices z,z’ then A + Np(2n + 2) U {z,z’}
and terminate the algorithm. Otherwise,
4. If F[X,.]U{2n + 2} contains a unique isolated vertex = then
if IN;:(f)| =2n — f+ 1 then
let y,. be the rightmost vertex of Nj.(f)
if |INp(2n+2)| <y, then A « Np(2n+2) U{z,2n+ 1}
else A+ Np(2n + 2)
else A — Np(2n+2) U {z}




A new decoding algorithm

1. find the unique Hamiltonian path and label the vertices accordingly
find the fixed element f
me 3. find the set A of the child nodes of the root of the representative tree

N

that are different from 2n+1
4. calculate the key as follows

with k<2

Procedure 3: Constructing the set of large ascending vertices

1. If F[X.] U {2n + 2} is connected then A « Ny(2n + 2) missing edges

and terminate the algorithm. Otherwise,
2. If F[X,.]U{2n + 2} contains no isolated vertices then A + Np(2n+2)U {2n+ 1}
and terminate the algorithm. Otherwise,
3. If F{X,|U{2n + 2} contains two isolated vertices z,z’ then A « Np(2n +2)U {z,z'}
and terminate the algorithm. Otherwise,
4. If F[X,.]U{2n + 2} contains a unique isolated vertex = then
if IN;(f)| =2n — f+ 1 then
let y, be the rightmost vertex of Nj.(f)
if [INp(2n+2)| <y, then A + Np(2n+2) U {z,2n + 1}
else A+ Np(2n + 2)
else A — Np(2n+2)U {z}




A new decoding algorithm

N

find the unique Hamiltonian path and label the vertices accordingly
find the fixed element f

find the set A of the child nodes of the root of the representative tree
that are different from 2n+1

calculate the key as follows

with k<2
missing edges
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A new decoding algorithm

find the unique Hamiltonian path and label the vertices accordingly
find the fixed element f
find the set A of the child nodes of the root of the representative tree
that are different from 2n+1
calculate the key as follows

Experimental results

n bits former alg. our alg. our alg. (-1 edge) | our alg. (-2 edges)
5 82.2 (4.4) us 56.5 (3.2) us 63.9 (6.7) us 78.0 (16.4) us
10 132.3 (9.3) us 95.7 (5.8) us 104.2 (9.4) us 122.8 (24.8) us
20 240.9 (11.8) us 177.5 (9. 7) us | 190.7 (17.4) us 219.9 (44.9) us
30 357.7 (14.4) us | 268.9 (13.2) us | 281.3 (18.2) us 328.1 (66.0) us

100 |[1406.7)45.7) s | 1135.4 (39.5) ps | 1151.2 (89.8) pis |[1248.5/(260.4) pis

average time (standard deviation)



Our contribution

B.,B., M., S.,S. (WG 2013)

12 11 10 9 8 7 6 5 4 3 2 1 0

1. formal definition of the class of canonical reducible permutation graphs
(precisely the graphs produced by Chroni and Nikolopoulos’s encoding algorithm)

2. characterization and linear-time recognition algorithm for such graphs
3. anew linear-time decoding algorithm (graph = integer key)

simpler, marginally faster and able to retrieve the correct key even after the
malicious removal of k < 2 edges

4. atight bound for the resilience of the codec against edge removals




Resilience against edge modifications

e U

wW=3 [B=11)




Resilience against edge modifications

W =2 (B=10 (6)

3 2 D—(0) 909

wW=3 [B=11)

(6)
@:‘ >(5 4 >(3 >(2 1 {>@ 9
& o




Resilience against edge modifications

W=2 (=10 (6)
(3 (S (3 ©
3 2 D—(0) @ zi

w=3 @B-11)

‘ (6) (6)
Q. >(5 " >(3 D>(2 1 {>@ 9 ooe
$ o @




Resilience against edge modifications
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For n > 2 bits, it is possible to detect up to 5 edge insertions/deletions in polynomial time.
This bound is tight.
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