A fast Monte Carlo algorithm for the homogeneous set sandwich problem

Vinícius Gusmão Pereira de Sá Guilherme Dias da Fonseca Celina Miraglia Herrera de Figueiredo

Universidade Federal do Rio de Janeiro

Sandwich Graphs

(sandwich graph of G_1, G_2)

Sandwich Problems

Input: two graphs $G_1(V,E_1)$ and $G_2(V,E_2)$ such that G_2 is a supergraph of G_1 .

Question: is there any sandwich graph G_S of pair (G_1, G_2) that has property $\prod ?$

 G_2 (supergraph of G_1)

An edge (x,y) is said to be

- mandatory, if $(x,y) \in E_1$
- forbidden, if $(x,y) \notin E_2$
- optional, if $(x,y) \in E_2 \setminus E_1$

Homogeneous Sets

Let G(V, E) be a graph.

A set $H \subset V$ is a *homogeneous set* of *G* if and only if all vertices in *H* have exactly the same neighborhood outside *H* and 1 < |H| < |V|.

The Homogeneous Set Sandwich Problem (HSSP): is there a sandwich graph of (G_1, G_2) which admits a homogeneous set?

History

$$\label{eq:max} \begin{split} m &= \min \ \{m_M, \, m_F\} \\ M &= \max \ \{m_M, \, m_F\} \end{split}$$

AUTHORS	PUBLICATION		ALGORITHM		TIME	DET./RAND.
Cerioli, Everett, Figueiredo, Klein	IPL, 1998		1	Ehaustive Envelopment	O(⊓^)O(N	det. 1 n²)
Tang, Wang, Yeh	IPL, 2001		2	Strongly Connected Sinks	$O(\Delta_2 n^2)$	det. n n)
Figueiredo, P. de Sá	M.Sc., 2003 + IPL, 2004		3	Two-Phase	O(m M)	det.
Figueiredo, Fonseca, P. de Sá,	á, LNCS, 2004 (WEA)		4	Balanced Subsets	O(n ^{3,5})	det.
Spinrad		D N N	5	Monte Carlo	O(n ³)	rand.
Figueiredo, Fonseca, P. de Sá	Algorithmica, 2005	QUALIFYING	6	Harmonic Series	O(n ³ log n)	det.
		gu	7	Growing Cliques	O(n ³ log n)	det.
			8	Las Vegas	O(n ³)	rand.
			9	Quick Fill	O(n ³ log m/n)	det.
Bornstein, P. de Sá, Figueiredo	IPL, 2006		10	Pair Completion	O(m n log n)	det.

Randomized Monte Carlo algorithms

- Give the correct answer with known probability *p*
- Their time complexity is computed deterministically

One-sided error Monte Carlo algorithms

YES-biased Monte Carlo

• Whenever the answer is YES, the answer is correct for certain (a certificate is given) NO-biased Monte Carlo

Defined analogously

Several independent runs ⇔ any desired error ratio

Bias vertices

Let $G_1(V,E_1)$, $G_2(V,E_2)$ be an input instance for the HSSP.

A vertex $b \in V$ is said to be a *bias vertex* of set $S \subseteq V \setminus \{b\}$ iff there exists at least one mandatory edge $[b, x] \in E_1$ between *b* and some vertex $x \in S$ and, also, at least one forbidden edge $[b, y] \notin E_2$ between *b* and some vertex $y \in S$.

The set B(S) containing all bias vertices of S is called its *bias set*.

Sandwich instance (HSSP input)

Sandwich Homogeneous Sets Characterization

A set $H \subset V$ is a sandwich homogeneous set of pair $G_1(V,E_1)$, $G_2(V,E_2)$ if and only if its bias set is the empty set.

Bias Envelopment

Bias Envelopment

Bias Envelopment

The Exhaustive Bias Envelopment algorithm

(CERIOLI, EVERETT, FIGUEIREDO, KLEIN, 1998)

Incomplete Bias Envelopment

Incomplete Bias Envelopment

Let $G_1(V,E_1)$, $G_2(V,E_2)$ be an input instance for the HSSP.

Suppose there is a sandwich homogeneous set $H \subset V$ with *h* vertices or more.

What is the probability $\overline{p_1}$ that a random pair of vertices $\{x,y\} \subset V$ is NOT contained in *H* ?

What is the probability $\overline{p_1}$ that a random pair of vertices $\{x,y\} \subset V$ is NOT contained in *H* ?

$$\overline{p_1} \le 1 - \frac{h(h-1)}{n(n-1)}$$

What is the probability $\overline{p_1}$ that a random pair of vertices $\{x,y\} \subset V$ is NOT contained in *H* ?

$$\overline{p_1} \le 1 - \frac{h(h-1)}{n(n-1)}$$

What is the probability $\overline{p_t}$ that *t* random pairs of vertices fail to be contained in *H*?

What is the probability $\overline{p_1}$ that a random pair of vertices $\{x,y\} \subset V$ is NOT contained in *H* ?

$$\overline{p_1} \le 1 - \frac{h(h-1)}{n(n-1)}$$

What is the probability $\overline{p_t}$ that *t* random pairs of vertices fail to be contained in *H*?

$$\overline{p_t} \le \left(1 - \frac{h(h-1)}{n(n-1)}\right)^t$$

What is the probability $\overline{p_1}$ that a random pair of vertices $\{x, y\} \subset V$ is NOT contained in *H*?

$$\overline{p_1} \le 1 - \frac{h(h-1)}{n(n-1)}$$

What is the probability $\overline{p_t}$ that *t* random pairs of vertices fail to be contained in *H*?

$$\overline{p_t} \le \left(1 - \frac{h(h-1)}{n(n-1)}\right)^t$$

Now, what is the probability p_t that, running *t* Bias Envelopment procedures (starting from *t* random pairs of vertices), a sandwich homogeneous set is successfully found?

What is the probability $\overline{p_1}$ that a random pair of vertices $\{x, y\} \subset V$ is NOT contained in *H*?

$$\overline{p_1} \le 1 - \frac{h(h-1)}{n(n-1)}$$

What is the probability $\overline{p_t}$ that *t* random pairs of vertices fail to be contained in *H*?

$$\overline{p_t} \le \left(1 - \frac{h(h-1)}{n(n-1)}\right)^t$$

Now, what is the probability p_t that, running *t* Bias Envelopment procedures (starting from *t* random pairs of vertices), a sandwich homogeneous set is successfully found?

$$p_t \ge 1 - \left(1 - \frac{h(h-1)}{n(n-1)}\right)^t$$

Hypothesis:
$$V \longrightarrow H |H| \ge h$$

$$p_t \ge 1 - \left(1 - \frac{h(h-1)}{n(n-1)}\right)^t$$

Fix
$$p_t \ge p = 1 - \varepsilon$$

$$h(t) = \left\lfloor \frac{1 + \sqrt{1 + 4(n^2 - n)(1 - (1 - p)^{1/t})}}{2} \right\rfloor$$

Running the Bias Envelopment on *t* random pairs suffices to find a sandwich homogeneous set with probability at least *p*, *in case there exists any with* h(t) *vertices or more*.

But the algorithm is meant to find one, if there exists any, *no matter its size*.

What is the number *t*' of Bias Envelopment procedures (on random pairs) that grants this?

Number <i>t</i> of Bias Envelopment procedures undertaken on random pairs of vertices:	Minimum integer <i>h</i> (<i>t</i>) such that <i>t</i> Bias Envelopment executions (on random pairs) suffice to find some sandwich homogeneous set, <i>in case there exists any with</i> h(t) <i>vertices or more</i> :
0	we don't know anything

Number <i>t</i> of Bias Envelopment procedures undertaken on random pairs of vertices:	Minimum integer <i>h</i> (<i>t</i>) such that <i>t</i> Bias Envelopment executions (on random pairs) suffice to find some sandwich homogeneous set, <i>in case there exists any with</i> h(t) <i>vertices or more</i> :
0	we don't know anything
1	<i>h</i> (1)

Number <i>t</i> of Bias Envelopment procedures undertaken on random pairs of vertices:	Minimum integer <i>h</i> (<i>t</i>) such that <i>t</i> Bias Envelopment executions (on random pairs) suffice to find some sandwich homogeneous set, <i>in case there exists any with</i> h(t) <i>vertices or more</i> :
0	we don't know anything
1	<i>h</i> (1)
2	<i>h</i> (2)

Number <i>t</i> of Bias Envelopment procedures undertaken on random pairs of vertices:	Minimum integer <i>h</i> (<i>t</i>) such that <i>t</i> Bias Envelopment executions (on random pairs) suffice to find some sandwich homogeneous set, <i>in case there exists any with</i> h(t) <i>vertices or more</i> :
0	we don't know anything
1	<i>h</i> (1)
2	<i>h</i> (2)

Number <i>t</i> of Bias Envelopment procedures undertaken on random pairs of vertices:	Minimum integer <i>h</i> (<i>t</i>) such that <i>t</i> Bias Envelopment executions (on random pairs) suffice to find some sandwich homogeneous set, <i>in case there exists any with</i> h(t) <i>vertices or more</i> :
0	we don't know anything
1	<i>h</i> (1)
2	h(2)
t'	h(t') = 2

Determining *t*'...

$$h(t) = \left\lfloor \frac{1 + \sqrt{1 + 4(n^2 - n)(1 - (1 - p)^{1/t})}}{2} \right\rfloor \text{ , given a fixed } p = 1 - \varepsilon$$

$$t' = \frac{\ln(1-p)}{\ln\left(1-\frac{2}{n(n-1)}\right)} = \left(\ln\frac{1}{\varepsilon}\right)\Theta(n^2) = \Theta(n^2)$$

Determining *t*'...

$$h(t) = \left\lfloor \frac{1 + \sqrt{1 + 4(n^2 - n)(1 - (1 - p)^{1/t})}}{2} \right\rfloor , \text{ given a fixed } p = 1 - \varepsilon$$

$$t' = \frac{\ln(1-p)}{\ln\left(1-\frac{2}{n(n-1)}\right)} = \left(\ln\frac{1}{\varepsilon}\right)\Theta(n^2) = \Theta(n^2) \quad \blacksquare \quad \text{But this leads to an} \\ O(n^4) \text{ algorithm!!!!!}$$

Determining *t*'...

- pick a random pair $\{x_k, y_k\}$
- Bias Envelopment

- pick a random pair $\{x_k, y_k\}$
- Bias Envelopment

(1) THERE IS a sandwich homogeneous set with more than *h*(*k*-1) vertices

(2) THERE IS NO sandwich homogeneous set with more than *h*(*k*-1) vertices

1.
$$h \leftarrow n$$

3. $t \leftarrow 0$
4. While $h > 2$ do
3.1. $t \leftarrow t+1$
3.2. $(v_1, v_2) \leftarrow random pair of vertices$
3.3. If *Incomplete Bias Envelopment* $(v_1, v_2, h) = YES$
3.3.1. Return YES.
3.4. $h = \left\lfloor \frac{1 + \sqrt{1 + 4(n^2 - n)(1 - (1 - p)^{1/t})}}{2} \right\rfloor$

4. Return NO.

Analysis:

Analysis:

MUITO OBRIGADO.

THANKS.