
On the resilience of canonical reducible

permutation graphsI

Lucila M. S. Bentoa,b, Davidson R. Boccardob, Raphael C. S. Machadob,
Vińıcius G. Pereira de Sáa, Jayme Luiz Szwarcfitera,b,c

aInstituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
bInstituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brasil
cCOPPE Sistemas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil

Abstract

An ingenious graph-based watermarking scheme recently proposed by Chroni
and Nikolopoulos encodes integers as a special type of reducible permuta-
tion graphs. It was claimed without proof that those graphs can withstand
attacks in the form of a single edge removal. We introduce a linear-time
algorithm which restores the original graph after removals of k ≤ 2 edges,
therefore proving an even stronger result. Furthermore, we prove that k ≤ 5
general edge modifications (removals/insertions) can always be detected in
polynomial time. Both bounds are tight. Our results reinforce the inter-
est in regarding Chroni and Nikolopoulos’s scheme as a possible software
watermarking solution for numerous applications.

Keywords: reducible permutation graphs, graph-based watermarking,
linear-time algorithms, software security

IA preliminary version containing partial results of this paper was presented as an
extended abstract entitled “Towards a provably resilient scheme for graph-based water-
marking” at the 39th International Workshop on Graph Theoretic Concepts in Computer
Science, WG 2013, and appeared in Lecture Notes in Computer Science 8165 (2013),
50–63. This paper is dedicated to Marty Golumbic on his 65th birthday.

Email addresses: lucilabento@ppgi.ufrj.br (Lucila M. S. Bento),
drboccardo@inmetro.gov.br (Davidson R. Boccardo), rcmachado@inmetro.gov.br
(Raphael C. S. Machado), vigusmao@dcc.ufrj.br (Vińıcius G. Pereira de Sá),
jayme@nce.ufrj.br (Jayme Luiz Szwarcfiter)

Preprint submitted to Elsevier July 10, 2015

1. Introduction

Among the modern methods to fight the illegal reproduction of software,
the embedding of digital watermarks deserves attention. Roughly speaking,
software watermarks hide encoded identification data into a program. They
allow for the timely retrieval of authorship and/or ownership information,
therefore discouraging piracy.

Soon after the creation of the first software watermark in 1996 by David-
son and Myrhvold [8], many interesting ideas have followed, including encod-
ing a binary—the identifier—as a special digraph embedded into the soft-
ware’s control-flow graph, an idea which was patented by Venkatesan and
Vazirani in 2006 [12]. Graph-based watermarking schemes have received a
lot of attention ever since, and due emphasis must be given to the contribu-
tions of Collberg et al. in a series of papers [5, 6, 7]. More recently, Chroni and
Nikolopoulos presented an ingenious such scheme [3, 4], where the generated
watermark graphs constitute a subclass of reducible flow graphs [9, 10, 11].
Such subclass possesses desirable features, among which its ease of imple-
mentation and its linear-time running time. A third feature would be its
alleged resilience to attacks. However, though its ability to withstand single
edge removals has been conjectured in [4], proving or disproving it was still
an open problem.

In [1, 2], a formal characterization of the class of graphs produced by
Chroni and Nikolopoulos’s encoding function was given. They were referred
to as canonical reducible permutation graphs. We have also formulated a
robust polynomial-time algorithm that, given a watermark with an arbitrary
number k ≥ 0 of deleted edges, either retrieves the encoded identifier or
proves that to be an impossible task. In the present paper, we disclose the
actual resilience of Chroni and Nikolopoulos’s watermark by proposing a
linear-time procedure which always succeeds in reconstituting a watermark
from which k ≤ 2 edges were removed, a bound which is the best possible.
Moreover, our results imply that k ≤ 5 edge deletions and/or insertions can
always be detected in polynomial time, a bound that is also tight.

Even though the resilience against two edge removals may look modest,
notice that, from the attacker’s standpoint, the fact that the watermark can
withstand even a single edge removal may already be hard to surmount.
Indeed, because the location of the watermark in the software binary is un-
known, one cannot do much better than the trial-and-error approach, hoping
to spoil the watermark by removing as few as possible arbitrarily chosen

2

edges, so not to spoil the very functionality of the software. If the water-
marking scheme is resilient to some number k ≥ 1 of edge removals, though,
then the attacker should remove at least k+1 arbitrarily chosen edges, and the
probability that the software functionality is affected grows with k. Moreover,
the total number of brute-force trials—the

(
m
k+1

)
subsets of k+ 1 edges—also

grows fast with k when k is very small compared to the total number m of
edges.

This paper is organized as follows. In Section 2, we recall the watermark
from Chroni and Nikolopoulos. In Section 3, we revisit some necessary defini-
tions and previous results. In Section 4, we formulate linear-time algorithms
to reconstruct the original graph and recover the encoded data even if two
edges are missing. The proof of one of the central results in that section,
namely Theorem 11, is somewhat involved, and we dedicate to it the whole
Section 5. Section 6 concludes the paper with our final remarks.

Throughout the text, we let V (G) and E(G) respectively denote, as usual,
the vertex set and edge set of a given graph G. Also, we let N+

G (v) and N−G (v)
be the sets of out-neighbors and in-neighbors of vertex v in G, with d+G(v)
and d−G(v) their respective sizes. If J is a subset of either V (G) or E(G),
then G− J corresponds to the graph obtained from G by the removal of J .

2. The watermark from Chroni and Nikolopoulos

We recall the encoding algorithm described in [4]. The index of the first
element in all considered sequences is 1.

Let ω be a positive integer identifier, and n the size of the binary represen-
tation B of ω. Let also n0 and n1 be the number of 0’s and 1’s, respectively,
in B, and let f0 be the index of the leftmost 0 in B. The extended binary B∗

is obtained by concatenating n digits 1, followed by the one’s complement of
B and by a single digit 0. We let n∗ = 2n + 1 denote the size of B∗, and
we define Z0 = (z0i), i = 1, . . . , n1 + 1, as the ascending sequence of indexes
of 0’s in B∗, and Z1 = (z1i), i = 1, . . . , n+ n0, as the ascending sequence of
indexes of 1’s in B∗.

Let S be a sequence of integers. We denote by SR the sequence formed
by the elements of S in backward order. If S = (si), for i = 1, . . . , t, and
there is an integer k ≤ t such that the subsequence consisting of the elements
of S with indexes less than or equal to k is ascending, and the subsequence
consisting of the elements of S with indexes greater than or equal to k is
descending, then we say S is bitonic. If all t elements of a sequence S are

3

distinct and belong to {1, . . . , t}, then S is a permutation. If S is a permu-
tation of size t, and, for all 1 ≤ i ≤ t, the equality i = ssi holds, then we say
S is self-inverting. In this case, the unordered pair (i, si) is called a 2-cycle
of S, if i 6= si, and a 1-cycle of S, if i = si. If S1, S2 are sequences (re-
spectively, paths in a graph), we denote by S1||S2 the sequence (respectively,
path) formed by the elements of S1 followed by the elements of S2.

Back to Chroni and Nikolopoulos’s algorithm, we define Pb = (bi), with
i = 1, . . . , n∗, as the bitonic permutation Z0||ZR

1 . Finally, the self-inverting
permutation Ps = (si) is obtained from Pb as follows: for i = 1, . . . , n∗,
element sbi is assigned value bn∗−i+1, and element sbn∗−i+1

is assigned value bi.
In other words, the 2-cycles of Ps correspond to the n unordered pairs of
distinct elements of Pb that share the same minimum distance to one of the
extremes of Pb, that is, the pairs (p, q) = (bi, bn∗−i+1), for i = 1, . . . , n. Since
the central index i = n + 1 of Pb is the solution of equation n∗ − i + 1 = i,
element bn+1 — and no other — will constitute a 1-cycle in Ps. We refer to
such element of Ps as its fixed element, and we let f denote it.

The watermark generated by Chroni and Nikolopoulos’s encoding algo-
rithm [4] is a directed graph G whose vertex set is {0, 1, . . . , 2n + 2}, and
whose edge set contains 4n + 3 edges, to wit: a path edge (u, u − 1) for
u = 1, . . . , 2n+ 2, constituting a Hamiltonian path that will be unique in G,
and a tree edge from u to q(u), for u = 1, . . . , n∗, where q(u) is defined as the
vertex v > u with the greatest index in Ps to the left of u, if such v exists, or
2n + 2 otherwise. The rationale behind the name tree edge is the fact that
such edges induce a spanning tree of G \ {0}.

Let us glance at an example. For ω = 349, we have B = 101011101, n = 9,
n0 = 3, n1 = 6, f0 = 2, B∗ = 1111111110101000100, n∗ = 19, Z0 = (10, 12,
14, 15, 16, 18, 19), Z1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17), Pb = (10, 12, 14, 15,
16, 18, 19, 17, 13, 11, 9, 8, 7, 6, 5, 4, 3, 2, 1), Ps = (10, 12, 14, 15, 16, 18, 19, 17, 13,
1, 11, 2, 9, 3, 4, 5, 8, 6, 7) and f = 11. The watermark associated to ω presents,
besides the path edges in the Hamiltonian path 20, 19, . . . , 0, the tree edges
(1, 13), (2, 11), (3, 9), (4, 9), (5, 9), (6, 8), (7, 8), (8, 9), (9, 11), (10, 20), (11, 13),
(12, 20), (13, 17), (14, 20), (15, 20), (16, 20), (17, 19), (18, 20) and (19, 20).

3. Previous results

In [1], the authors proved a number of properties concerning the water-
mark from Chroni and Nikolopoulos and the special permutations they are
associated to. We recall two of those properties, which are necessary for the

4

recovering procedures described in Section 4. Since the proofs are omitted
in the present text, the original numbers of the properties were provided for
ease of reference.

Let G be the watermark graph associated to an identifier ω of size n, and
let Pb and Ps be, respectively, the bitonic and the self-inverting permutations
dealt with during the construction of G (see Section 2).

Property 1 ([1], originally Property 3). The fixed element f satisfies
f = n + f0, unless the identifier ω is equal to 2k − 1 for some integer k,
whereupon f = n∗ = 2n+ 1.

Property 2 ([1], originally Property 8). For u ≤ 2n, (u, 2n + 2) is a
tree edge of watermark G if, and only if, u−n is the index of a digit 1 in the
binary representation B of the identifier ω represented by G.

In that same paper [1], some definitions and results which will be neces-
sary in this paper were introduced. We restate them briefly in the remainder
of this section for the sake of completeness. The proofs are again omitted,
and we refer the reader to their original numbers in [1].

Definition 3. A self-labeling reducible flow graph is a directed graph G such
that

(i) G presents exactly one directed Hamiltonian path H, hence there is
a unique labeling function σ : V (G) → {0, 1, . . . , |V (G)| − 1} of the
vertices of G such that the order of the labels along H is precisely
|V (G)| − 1, . . . , 0; and,

(ii) considering the labeling σ as in the previous item, N+
G (0) = ∅,

N−G (0) = {1}, N+
G (|V (G)| − 1) = {|V (G)| − 2}, |N−G (|V (G)| − 1)| ≥ 2,

and, for all v ∈ V (G) \ {0, |V (G)| − 1}, N+
G (v) = {v − 1, w}, for some

w > v.

Definition 4. The representative tree T of a self-labeling reducible flow
graph G with Hamiltonian path H has vertex set V (T) = V (G) \ {0} and
edge set E(T) = E(G) \E(H), where all edges are deprived of their orienta-
tion.

5

A representative tree T is always regarded as a rooted tree whose root
is |V (G)| − 1, Moreover, it is regarded as an ordered tree, that is, for each
v ∈ V (T), the children of v are always considered according to an ascending
order of their labels. For v ∈ T , we denote by N∗T (v) the set of descendants
of v in T .

Let T be a representative tree. The preorder traversal P of T is a sequence
of its vertices that is recursively defined as follows. If T is empty, P is also
empty. Otherwise, P starts at the root r of T , followed by the preorder
traversal of the subtree whose root is the smallest child of r, followed by
the preorder traversal of the subtree whose root is the second smallest child
of r, and so on. The last (rightmost) element of P is also referred to as the
rightmost element of T . The first element of the preorder traversal P of a
tree T is always its root. If we remove the first element of P , the remaining
sequence is said to be the root-free preorder traversal of T .

Definition 5. Let S = (si), i = 1, . . . , 2n+1, be a self-inverting permutation.
We say S is canonical if:

(i) there is exactly one 1-cycle in S;

(ii) each 2-cycle (si, sj) of S satisfies 1 ≤ i ≤ n, for si > sj;

(iii) s1, . . . , sn+1 is a bitonic subsequence of S starting at s1 = n + 1 and
ending at sn+1 = 1.

We can now recall the definition of canonical reducible permutation graphs
given in [1]. In that same paper, such graphs were proved to correspond pre-
cisely to the graphs produced by Chroni and Nikolopoulos’s encoding func-
tion.

Definition 6. A canonical reducible permutation graph G is a self-labeling
reducible flow graph on 2n + 3 vertices, for some integer ≥ 1, such that
the root-free preorder traversal of the representative tree of G is a canonical
self-inverting permutation.

Let T be the representative tree of some canonical reducible permutation
graph G, and P the root-free preorder traversal of T . We refer to the fixed
element f of P also as the fixed element (or vertex) of both G and T . Sim-
ilarly, the 2-cyclic elements of P correspond to cyclic elements (or vertices)
of both G and T . A vertex v ∈ V (T) \ {2n + 2} is considered large when
n < v ≤ 2n+ 1; otherwise, v ≤ n and v is dubbed as small.

6

Definition 7. A representative tree T is a Type-1 tree if

(i) n+ 1, n+ 2, . . . , 2n+ 1 are children of the root 2n+ 2 in T ; and

(ii) 1, 2, . . . , n are children of 2n.

Definition 8. A representative tree T is a Type-2 tree relative to f if

(i) n + 1 = x1 < x2 < . . . < x` = 2n + 1 are the children of 2n + 2, for
some ` ∈ [2, n− 1];

(ii) xi > xi+1 and xi is the parent of xi+1, for all i ∈ [`, n− 1];

(iii) 1, 2, . . . , f − n− 1 are children of xn;

(iv) xi = n+ i, for 1 ≤ i ≤ f − n− 1;

(v) f is a child of xq, for some q ∈ [`, n] satisfying xq+1 < f whenever
q < n; and

(vi) N∗T (f) = {f −n, f −n+ 1, . . . , n} and yi ∈ N∗T (f) has index xyi−f + 1
in the preorder traversal of N∗T [f].

Lemma 9 ([1], originally Lemma 21). If yr is the rightmost vertex of a
Type-2 representative tree T relative to some f 6= 2n+ 1, then yr is equal to
the number ` of children of the root 2n+ 2 in T .

Theorem 10 ([1], originally Theorem 22). A digraph G is a canonical
reducible permutation graph if, and only if, G is a self-labeling reducible flow
graph and

(i) the fixed element of G is 2n+1 and G has a Type-1 representative tree;
or

(ii) the fixed element of G belongs to [n+ 2, 2n] and G has a Type-2 repre-
sentative tree.

7

Algorithm 1 reconstruct Hamiltonian path(G′)

input: a damaged watermark G′ with 2n+ 3 vertices and
two missing edges

output: the unique Hamiltonian path H in the original watermark G

1. Let V0 be the set of all vertices with degree zero in G′.

2. Let H be the set of all Hamiltonian path candidates obtained by
a call to plug next subpath(G′, V0, ∅).

3. for each Hamiltonian path candidate H ∈ H do
if validate labels(G′, H) then

return H

4. Linear-time decoding (k ≤ 2 missing edges)

In this section, we analyze the effects of a distortive attack against a
watermark (i.e., a canonical reducible permutation graph) G from which
k ≤ 2 edges were removed. Note that the unique Hamiltonian path H of G
may have been destroyed by the attack. The knowledge of H is crucial for
determining the labels of the vertices (they range from 2n+ 2 to 0 along H).
Our first task is therefore to determine whether any path edges are missing
from G, so we can restore H and label the vertices accordingly.

4.1. Reconstructing the Hamiltonian path

The algorithm given in pseudocode as Algorithm 1 retrieves the unique
Hamiltonian path H of a (possibly damaged) watermark G′, that is, a graph
isomorphic to a canonical reducible permutation graph G minus k ≤ 2 edges.
It employs two subroutines presented separately: plug next subpath and vali-
date labels. The algorithm itself is straightforward. It basically builds Hamil-
tonian path candidates for G (possibly by reinserting some edges) and tests
whether the vertex labeling implied by each such candidate satisfies some
conditions. It returns the one and only candidate which passes the test.

The procedure plug next subpath, given as Algorithm 2, takes as input a
graph G′, a path Q with V (Q) ∩ V (G′) = ∅, and an output list H, where
(restored) Hamiltonian path candidates of G′ will be placed after being con-
catenated to (the left of) a copy of Q. It starts by determining a set S of sub-

8

path heads. This set comprises every vertex s ∈ V (G′) satisfying d+G′(s) = 0,
in case Q = ∅, or d+G′(s) ≤ 1, otherwise. Then it computes the collection of
all maximal backward-unbifurcated paths of G′ reaching S (or S-bups). An
S-bup of G′ is a path vj, vj−1, . . . , v1 such that

• v1 = s, for some s ∈ S;

• (vk, vk−1) ∈ E(G′), for 2 ≤ k ≤ j; and

• the in-degree of vk in G′ − {v1, . . . , vk−1} satisfies

d−G′−{v1,...,vk−1}(vk) =

{
1, if 1 ≤ k ≤ j − 1;

0, if k = j.

In other words, starting from some subpath head s = v1, the procedure builds
a directed path Q in backwards fashion by concatenating an in-neighbor of
vk to the left of vk, for k ≥ 1, whenever the in-degree of vk is 1 in the graph
induced by all vertices which have not yet been incorporated to the path.
It carries on iteratively this way until, for some j, the in-degree of vj in the
aforementioned graph is either zero, whereupon it adds the path so obtained
to a list of S-bups, or greater than one, whereupon it discards the current
path. The rationale behind it is that a backward bifurcation on vj means
there are two vertices, say u and w, which have not yet been added to the
path, both of which are in-neighbors of vj. Since at most one of them, say u,
may be the tail of a path edge pointing to vj in Q, the other one, w, will be
the tail of a tree edge pointing to vj, which is not acceptable since w will be
to the left of vj in the path. Whichever the case, the algorithm starts anew
with another subpath head s ∈ S until all of them have been considered and
the list of S-bups is fully populated. Finally, it appends each S-bup Q′, one
at each time, to the left of Q (by adding a plausible path edge e /∈ E(G′) from
the rightmost vertex in Q′ to the leftmost vertex in Q) and performs one of
two possible actions:

• if V (Q′) = V (G′) (i.e., if Q′ is a Hamiltonian path of G′), than it adds
the new path Q′||Q to the output list H;

• otherwise, it makes a recursive call to plug next subpath with parame-
ters G′ − V (Q′), Q′||Q, and the output list H.

9

Algorithm 2 plug next subpath(G′, Q,H)

input: a graph G′, a path Q with V (Q) ∩ V (G′) = ∅,
and an output list H

output: an updated H containing all Q′||Q
where Q is a Hamiltonian path of G′ (plus k ≥ 0 extra edges)
ending at a vertex of degree d ≤ 1 (or d = 0, if Q is empty)

1. Let S ← {s ∈ V (G′) : d+G′(s) = 0}.
if Q 6= ∅ then S ← S ∪ {s ∈ V (G) : d+G′(s) = 1}

2. for each s ∈ S do
v ← s
Q′ ← s
while |N−G′−(V (Q′)−{v})(v)| = 1 do

v ← the unique element in N−G′−(V (Q′)−{v})(v)

Q′ ← v||Q′
if |Q′| = |V (G′)| then
H ← H∪ {Q′||Q}

else if |N−G′−(V (Q′)−{v})(v)| = 0 then

plug next subpath(G′ − V (Q′), Q′||Q,H)
else discard Q′ // a backward bifurcation was found

When all S-bups have been considered, it returns H.
If H is a path, then we indicate the jth element of H (from right to left,

starting at j = 0) by H[j].
The second subroutine invoked by Algorithm 1 is called validate labels,

shown in pseudocode as Algorithm 3. It takes as parameters a watermark
G′ (with two missing edges) and a candidate Hamiltonian path H. First, it
determines the set H∗ = E(H) \ E(G′) of the k ≤ 2 plausible path edges
that were required by H. It then checks whether it is possible to obtain a
valid canonical reducible permutation graph G through the insertion of H∗

and some set of 2− k tree edges into G′. It does so by testing the following
necessary conditions, where T denotes the representative tree of G:

(1) vertices H[2n+1] and H[n+1] must be in-neighbors of H[2n+2] in G;

(2) the out-degree of vertices H[2n+ 1], . . . , H[1] must be 2 in G, and the

10

out-degree of H[2n+ 2] must be 1;

(3) the number of tree edges that would have to be inserted into G so that
the two previous conditions are met must not exceed 2 − |H∗|; and,
finally,

(4) if vertices H[1] and H[n] are not siblings in T , then vertex H[1] must
be a child of the nth descendant of the root H[2n+ 2] which is a large
vertex (i.e., the nth descendant of the root, counted right to left, among
those whose indexes in H are greater than or equal to n+1); moreover,
the index in H of the rightmost vertex in the preorder traversal of T
must correspond to the number of children of 2n+ 2 in T .

The first condition above appears in the definition of both Type-1 and
Type-2 representative trees (Definitions 7 and 8), hence its necessity comes
directly from Theorem 10. The second condition is due to Definition 6 and
from the second property in the definition of self-labeling reducible flow
graphs (Definition 3). The third condition obviously comes from the fact
that 2 edges were removed from G, and |H∗| edges have already been (re-
)inserted at this point. Finally, the last condition is due to property (iii) in
Definition 8 and to Lemma 9. It certainly applies to Type-2 representative
trees only, which is precisely the case where vertices H[1] and H[n] are not
siblings in the representative tree, by definition. We remark that, if H is
indeed the unique Hamiltonian path of a canonical reducible permutation
graph G, then, for all v ∈ V (G), the canonical label v satisfies v = H[v].

Theorem 11. Algorithm 1 correctly retrieves the original, unique Hamilto-
nian path from a canonical reducible permutation graph on 2n + 3 vertices
from which k ≤ 2 edges were removed. It runs in O(n) time.

The proof of Theorem 11 is somewhat involved and unfortunately de-
mands some case analysis. We therefore postpone it until Section 5.

4.2. Determining the fixed vertex

Suppose the watermark G has been attacked, which resulted in a damaged
watermark G′, where two unknown edges are missing. Now we shall recognize
the fixed vertex of the original watermark, given the damaged one. Getting
to know the fixed vertex of G will play a crucial role in retrieving the missing
tree edges and consequently restoring the original identifier w encoded by G.

11

Algorithm 3 validate labels(G′, H)

input: a graph G′, with |V (G′)| = 2n+ 3,
and a Hamiltonian path candidate H, with |E(H) \ E(G′)| ≤ 2

output: True, if the labeling of V (G′) implied by H is valid; False, otherwise

1. Label the vertices of G′ in such a way that H = 2n+ 2, 2n+ 1, . . . , 0.
Let H∗ ← E(H) \ E(G′), and insert H∗ into G′ obtaining G′′.
Let also F be the forest obtained from G′′ by the removal of all (path)
edges in H, as well as the isolated vertex 0, and let missing edges ← 0.

2. for each v ∈ {n+ 1, 2n+ 1} do
if (v, 2n+ 2) /∈ E(G′′) then

if d+G′′(v) = 2 then return False
E(G′′)← E(G′′) ∪ {(v, 2n+ 2)}; missing edges += 1

for each v ∈ {1, . . . , 2n+ 1} do
if d+G′′(v) < 2 then missing edges += 1

if missing edges > 2− |H∗| then return False

3. if vertices 1 and n are siblings in F then
Let r be the rightmost vertex in the preorder traversal of F .
if r > d−G′′(2n+ 2) + missing edges then return False
Let x be the length of the unique path from 1 to 2n+ 2 in F .
if r + x− 2 6= n then return False

4. return True

We describe some characterizations that lead to an efficient computation
of the fixed vertex f of G. Let T be the representative tree of the original
watermark G. We consider the case where the two edges that have been
removed belong to T . Denote by F the forest obtained from T by the removal
of two edges. First, we consider the case f = 2n+ 1.

Theorem 12. Let F be a forest obtained from the representative tree T by
removing two edges, where n > 2. Then f = 2n+ 1 if, and only if,

1. vertex 2n+ 1 is either a leaf or an isolated vertex of F ; and

2. the n small vertices of G′ are children of 2n in F , with the possible

12

exception of at most two of them, in which case they must be isolated
vertices.

Proof: From Theorem 10, we know that, if f = 2n + 1, then f is the
rightmost vertex of T , implying the necessity of condition (i). Again by
Theorem 10, the small vertices of T must immediately follow the rightmost
cyclic vertex of T , namely 2n. Since two edges have been deleted from T ,
it follows that all small vertices are children of 2n in F , with the possible
exception of at most two of them, which then became isolated vertices, so
condition (ii) is also necessary.

Conversely, suppose conditions (i) and (ii) hold, and assume f 6= 2n+ 1.
Then the second case covered by Theorem 10 applies for T . If f = 2n, we
know from n > 2 that vertex 2n + 1 has at least 3 children in T , making
it impossible for 2n + 1 to become a leaf of F by the removal of only two
edges, therefore contradicting condition (i). If, on the other hand, f < 2n,
then, again by Theorem 10, vertex 2n + 1 cannot have any small children,
contradicting condition (ii). Therefore f > 2n, implying f = 2n+ 1. 2

Next, we characterize the case f < 2n+ 1. Figure 1 helps to visualize the
three conditions of the theorem.

Theorem 13. Let F be a forest obtained from the representative tree T of
watermark G by removing two of its edges, and let x ≤ 2n be a large vertex
of T which is not a child of 2n+ 2. Then x is the fixed vertex f of G if, and
only if,

(i) the large vertex x has a sibling z in F , and x > z; or

(ii) the subset of small vertices Y ′ ⊂ Y , Y ′ = {x−n, x−n+1, . . . , n} can be
partitioned into at most two subsets Y ′1 , Y

′
2 , such that ∅ 6= Y ′1 = N+

F (x)
and Y ′2 is the vertex set of one of the trees which form F ; or, whenever
the previous conditions do not hold,

(iii) the large vertex x is the rightmost vertex of one of the trees of F , while
the rightmost vertices of the remaining trees are all small vertices.

Proof: For the sufficiency of condition (i), let x be a large vertex of F ,
z a sibling of x in F and xq their parent. By Theorem 10, the only large
vertex of T which is not a child of 2n+ 2 and has some sibling z is precisely

13

w

z f

f or f
Y' U = N (f)
1

F
*

Y' = {x-n, x-n+1, ..., n}

2

f

Y'T' T"

Y' Y'

f

Y'

or

(a) (b) (c)

Figure 1: (a–c) Conditions (i), (ii) and (iii) of Theorem 13, respectively.

the fixed vertex f . Clearly, the removal of edges of T cannot create new
vertices having this property. Furthermore, xq /∈ {xn, 2n+ 1} implies that f
has a unique sibling xq+1, hence f > xq+1 according to the ascending order
of siblings in F , whereas xq ∈ {xn, 2n + 1} implies every sibling y of f is a
small vertex, hence f > y. Consequently, x = f .

Now suppose condition (ii) holds. First, assume that Y ′2 = ∅. In this case,
Y ′ = Y ′1 = {x− n, x− n+ 1, . . . , n} = N∗F (x). Again, according to Theorem
10, we can locate a unique vertex f fulfilling this property, implying x = f .
In addition, when Y ′2 6= ∅, we can again select a unique vertex f , where
N∗F (f) ∪ Y ′2 = Y ′. Thus, x = f indeed.

Finally, assume neither condition (i) nor condition (ii) hold. Because (i)
is not satisfied, we have that either xq /∈ {xn, 2n + 1}, and the edge from
xq to one of its children has been deleted; or xq ∈ {xn, 2n + 1}, and the
edge (xq, f) has been deleted. Additionally, since (ii) is not satisfied, f must
have a unique child y, and the edge (f, y) has also been removed. Next,
assume that, in such a context, condition (iii) is verified. For the sake of
contradiction, suppose the theorem is false, so that x 6= f . Since x 6= 2n+ 1
and x is not a child of 2n+ 2, it follows that it must be a descending vertex,
whereupon the fact that x is the rightmost vertex of the tree of F containing
it implies that x is a leaf of F . Now the latter implies that the edge (xq, x)
of T has been removed, where xq is the parent of x in T . Because condition
(i) is not satisfied, at least one edge has been removed from T , and because
condition (ii) is not satisfied, at least one more edge has been deleted from
T . Since no more than two edges overall have been removed, we conclude
that the assumption is false, and therefore, here again, x = f .

Conversely, assume that x is the large vertex of F satisfying x = f . We
prove that condition (i) or condition (ii) holds, otherwise condition (iii) is
satisfied.

Let xq be the parent of x = f in T . If xq has at least two children in

14

F , then f is larger than its siblings, by Theorem 10, and condition (i) holds.
Alternatively, if f is not a leaf of F , then the set Y ′ = {x−n, x−n+1, . . . , n}
either satisfies Y ′ = N∗F (f) or it can be split into two subsets Y ′1 ∪ Y ′2 = Y ′,
where Y ′1 = N∗F (f) and Y ′2 is the vertex set of one of the trees of F . In this
situation, condition (ii) holds. Assume, next, that neither condition (i) nor
condition (ii) hold. Then the parent xq of f in T has at most one child in F ,
whereas f has no children. The latter implies that f is the rightmost vertex
of the tree of F containing it. Since xq 6= f , we know that no more than two
edges have been deleted from T , hence no large vertex other than f can be
a leaf of F . Consequently, condition (iii) holds, completing the proof. 2

The above theorems lead to an algorithm that efficiently finds the fixed
vertex of watermark G (see Algorithm 4). The input is the forest F , obtained
from the representative tree T of G by the removal of two edges. First, the
algorithm checks whether f = 2n + 1. By Theorem 12, it suffices to verify
whether 2n+ 1 is a leaf of F and all small vertices are children of 2n, except
possibly two, which must be isolated vertices. If this is not the case, then
the algorithm proceeds to determining f knowing that f < 2n+1. Basically,
such task consists in checking conditions (i), (ii) and (iii) of Theorem 13,
which can be done in a straightforward manner.

Steps 1 and 3 can be computed easily in linear time. As for Step 2,
observe that there are at most two large vertices x of F that may satisfy the
condition of having only small children. Consequently, the tests in Step 2
apply to at most two candidates x, hence the entire algorithm runs in O(n)
time.

4.3. Determining the root’s children

After having identified the fixed vertex of the watermark, we are almost
in a position to determine the tree edges that have been removed.

Observe that, when f = 2n+ 1, the task is trivial, since, in this case, by
Theorem 10, there can be only one canonical reducible permutation graph
G relative to n. Such graph is precisely the one with a Type-1 represen-
tative tree T , which is unique for each n > 2 (cf. Property 1 of canonical
reducible permutation graphs, in Section 2). By definition, the root-free
preorder traversal of a Type-1 representative tree, when f = 2n + 1, is
n+ 1, n+ 2, . . . , 2n, 1, 2, . . . , n, 2n+ 1.

We therefore want to determine the children of 2n + 2 restricted to the
case where f < 2n+ 1. Let G be a watermark, T its representative tree and

15

Algorithm 4 find f (F)

input: a forest F (a representative tree with two missing edges)
output: the fixed element f ≤ 2n+ 1

1. if F contains a large vertex x having a sibling z, then
return f := max{x, z}

2. for each large vertex x of F satisfying NF (x) 6= ∅
for each small y ∈ NF (x)

Y ′ ← {x− n, x− n+ 1, . . . , n}
if (N∗F (x) = Y ′ or N∗F (x) ⊂ Y ′) and

(Y ′ \N+
F (x) is the vertex set of a tree of F) then

return f := x

3. Find the preorder traversals of the 3 trees of F , and let f be the
unique vertex that is both large and the rightmost element of the
preorder traversal of some tree of F .
return f

F the forest obtained from T by the removal of two edges. As usual, f stands
for the fixed vertex of T , X is the set of large vertices other than 2n+ 2, and
Xc = X \{f}. Finally, denote by A ⊆ Xc the subset of large cyclic vertices of
T which are children of the root 2n+2, and denote by D the set D = Xc \A.
From the proof of Theorem 10, we know that the vertices in A correspond
to the maximal ascending subsequence in the bitonic permutation that was
used in the construction of G. We therefore refer to A as the set of ascending
vertices of T , and to D as the set of descending vertices of T . Given the
forest F and its fixed vertex f , Algorithm 5 computes the set A.

It is easy to conclude that the above algorithm can be implemented in
O(n) time. Now we prove its correctness.

Theorem 14. Algorithm 5 correctly computes the set A of ascending vertices
of T .

Proof: We follow the different conditions checked by the algorithm. Assume
F [Xc ∪ {2n + 2}] is connected. Then NT (2n + 2) = NF (2n + 2), implying
A = NF (2n+ 2), and the algorithm is correct if it terminates at Step 1.

16

Algorithm 5 find ascending large vertices(F)

input: a forest F (a representative tree with two missing edges), and
the set Xc of the large cyclic vertices in F

output: the children A of the root 2n+ 2 of the representative tree

1. if F [Xc ∪ {2n+ 2}] is connected then
return A := NF (2n+ 2)

2. if F [Xc ∪ {2n+ 2}] contains no isolated vertices then
return A := NF (2n+ 2) ∪ {2n+ 1}

3. if F [Xc ∪ {2n+ 2}] contains two isolated vertices x, x′ then
return A := NF (2n+ 2) ∪ {x, x′}

4. if F [Xc ∪ {2n+ 2}] contains a unique isolated vertex x then
if |N∗F (f)| = 2n− f + 1 then

let yr be the rightmost vertex of N∗F (f)
if |NF (2n+ 2)| < yr then

return A := NF (2n+ 2) ∪ {x, 2n+ 1}
else

return A := NF (2n+ 2)
else

return A := NF (2n+ 2) ∪ {x}

Assume F [Xc ∪ {2n + 2}] is disconnected, but has no isolated vertices.
Then either NF (2n + 2) = NF (2n + 2) or the edge (2n + 2, 2n + 1) was one
of those that might have been removed from T . In any of these situations,
we can write A = NF (2n+ 2)∪{2n+ 1}, implying that the algorithm is also
correct if it terminates at Step 2.

Assume F [Xc∪{2n+2}] contains two distinct isolated vertices x, x′. The
only possibility is x, x′ ∈ NT (2n+ 2). So, the action of constructing A as the
union of x, x′ and NF (2n + 2) assures correctness, whenever the algorithm
terminates at Step 3.

The last situation is F [Xc∪{2n+2}] containing a unique isolated vertex x.
We consider the following alternatives. If |N+

F (f)| = 2n−f+1, it implies that
N∗T (f) = N∗F (f), because the set of descendants of f in T comprises exactly
yf0 , yf0+1, . . . , yn, The number of such descendants of f is therefore n−f0+1,

17

which, by Property 1 of canonical reducible permutation graphs, is equal to
2n−f+1. Now, by Theorem 10, |NT (2n+2)| = yr, where yr is the rightmost
vertex ofN∗F (f). In this situation, |NF (2n+2)| < yr implies that x necessarily
belongs to NF (2n+2). In addition, edge (2n+2, 2n+1) might also have been
deleted from T , since a single edge deletion suffices to turn x into an isolated
vertex. Observe, on the other hand, that isolating a large vertex which is
not a child of 2n + 2 requires the removal of at least two edges, provided
n > 2. Thus, A = NF (2n + 2) ∪ {x, 2n + 1}, and the algorithm is correct.
In case |NF (2n + 2)| = yr, we know that NT (2n + 2) = NF (2n + 2), hence
A = NF (2n+2), ensuring correctness. Finally, when |N∗F (f)| 6= 2n−f+1, it
means some edge inside the subtree rooted at f has been deleted from T . In
this case, the isolated vertex x is necessarily a child of 2n+ 2 in T , implying
A = NF (2n+ 2) ∪ {x}, and the algorithm is correct. 2

4.4. Retrieving the missing edges

Once we know the set of ascending vertices, it is simple to restore the en-
tire tree T . Basically, given sets A and Xc, we obtain the set D of descending
vertices. Then, by sorting A and D accordingly, we can locate all the large
cyclic vertices in T , using the model given by Theorem 10. We then place
f in T , such that its parent xq is smallest cyclic vertex that is larger than
f . Finally, we place the small vertices. Vertices {1, 2, . . . , f − n− 1} are all
children of xn. The remaining small vertices {f − n, f − n + 1, . . . , n} are
descendants of f and their exact position in T can be obtained as follows.
For each y ∈ {f − n, f − n + 1, . . . , n}, we find its position in the preorder
traversal P of T by determining the large vertex x whose position in the
bitonic sequence of the cyclic large vertices is exactly y. Then y must be the
xth vertex in the root-free preorder traversal of T . Finally, the position of f
in P is clearly equal to f .

The details are given in Algorithm 6, which computes the preorder traver-
sal P of T − {2n+ 2} in time O(n). Such a procedure assures the complete
retrieval of T and therefore we are able to restore the watermark G in full.

4.5. Linear-time decoding with k ≤ 2 missing edges

We can now formulate a new, resilient decoding algorithm, presented
as Algorithm 7. If the input watermark presents k ≤ 2 missing edges, the
algorithm fixes it prior to running the actual decoding step, which is a simple
call to the decoding algorithm presented by these authors in [1].

18

Algorithm 6 retrieve preorder traversal(T, f, A,Xc)

input: the fixed vertex f , the set A of ascending vertices,
and the set Xc of large cyclic vertices in a representative tree T

output: the preorder traversal P of T

1. Let D ← Xc \ A.

2. The initial vertices of P are those of A in ascending order,
followed by those of D, in descending order.
Now, subsequently place in P the small vertices 1, . . . , f − n− 1,
in this exact order, immediately after the last descending
vertex xn ∈ D. Then place f as to immediately follow f − n− 1.

3. for each small vertex y ∈ {f − n, f − n+ 1, . . . , n}
Let P [y] be the (large) vertex x whose index in P is y.
Place y at position x in P , i.e., satisfying P [x] = y.

4. return P

Theorem 15. Algorithm 7 retrieves the correct identifier, encoded in a wa-
termark with up to two missing edges, in linear time.

Proof: Since the final step of the algorithm runs in linear time, its overall
time complexity relies on the fact that Algorithms 1–6 run in linear time
themselves, as proved earlier in the text. The correctness of the algorithm
follows from the ability to reconstruct the original watermark when k ≤ 2
edges have been removed. 2

Corollary 16. Distortive attacks in the form of k edge modifications (in-
sertions/deletions) against canonical reducible permutation graphs G, with
|V (G)| = 2n+ 3, n > 2, can always be detected in polynomial time, if k ≤ 5,
and also recovered from, if k ≤ 2. Such bounds are tight.

Proof: From Theorem 15, we know that, for n > 2, there are no two
watermarks G1, G2, with |V (G1)| = |V (G2)| = 2n+ 3, such that

|E(G1) \ E(G2)| = |E(G2) \ E(G1)| ≤ 2,

19

Algorithm 7 resilient decode(G)

input: a watermark G with 2n+ 3 vertices and 0 ≤ k ≤ 2 missing edges
output: the identifier ω encoded by G

1. Let k ← |E(G)| − (4n+ 3).

2. if k > 2 then report the occurrence of k edge removals and halt.

3. if 0 < k ≤ 2 then proceed to the reconstitution of the watermark
(see Section 4, Algorithms 1–6).

4. return ω via the linear-time decoding procedure from [1].

otherwise it would not always be possible to recover from the removal of up
to two edges. Thus, for n > 2, any two canonical reducible permutation
graphs G1, G2 satisfy

|E(G1) \ E(G2)| = |E(G2) \ E(G1)| ≥ 3, (1)

hence G1 cannot be transformed into G2 by less than 6 edge modifica-
tions. Since the class of canonical permutation graphs can be recognized
in polynomial-time in light of the characterization given in Theorem 10, and
since any number k ≤ 5 of edge modifications made to a graph G of the class
produces a graph G′ that does not belong to the class, all distortive attacks
of such magnitude (k ≤ 5) can be detected. Now, for k = 2, we have three
possibilities:

(i) two edges were removed;

(ii) two edges were inserted;

(iii) one edge was removed and one edge was inserted.

If case (i) applies, Theorem 15 guarantees that the original graph can be
successfully restored. If case (ii) or case (iii) apply, then a simple algorithm
in which all possible sets of two edge modifications are attempted against
the damaged graph G′ suffices to prove that the original graph G can be
restored in polynomial time, since, as we already know, exactly one such set
shall turn G′ into a canonical reducible permutation graph. The case k = 1
is simpler and can be tackled in analogous manner.

20

It remains to show that such bounds are tight. For n > 3, let ω1 =
2n−1 and ω2 = 2n−1 + 1. It is easy to see that the graphs G1, G2 encoding
ω1, ω2 satisfy (1) with equality. Indeed, by construction, the self-inverting
permutation associated to ω1 is (n + 1, 2n + 1, 2n, 2n − 1, 2n − 2, . . . , n +
3, 1, n+ 2, n, n− 1, . . . , 4, 3, 2), and the self-inverting permutation associated
to ω2 is (n+1, 2n, 2n+1, 2n−1, 2n−2, . . . , n+3, 1, n+2, n, n−1, . . . , 4, 2, 3).
We can spot the two sole transpositions between these permutations, namely
(2n, 2n+ 1) and (2, 3). The effects of such transpositions are:

• the tree edge whose tail is 2n goes to 2n+ 1 in G1 and to 2n+ 2 in G2;

• the tree edge whose tail is 2n− 1 goes to 2n in G1 and to 2n+ 1 in G2;

• the tree edge whose tail is 2 goes to 3 in G1 and to 4 in G2;

Since all other tree edges remain the same, there are exactly three vertices
whose parents in the representative tree are different in G1 and G2, namely
2n, 2n− 1 and 2.

We remark that there are many such pairs ω1, ω2 for each value of n. The
one above is but an example. Indeed, computational results suggest that the
ratio of canonical reducible permutation graphs encoding binaries of n bits
which can be modified into another canonical reducible permutation graph
of the same size by replacing three edges grows with n, as discussed in the
concluding Section 6. 2

5. Proof of Theorem 11

Let Gk be the set of all canonical reducible permutation graphs with k
edges missing. When an element G′ of Gk is the input of plug next subpath
(G′, ∅,H), its output is clearly a Hamiltonian path of some graph G such that
V (G) = V (G′) and E(G) \ E(G′) ≤ k. Thus, when a canonical reducible
permutation G minus two edges is passed to Algorithm 1, the path H it
returns is the Hamiltonian path of some element of G2. We claim such graph
can be no other but G.

Let Ĥ = 2n+ 2, 2n+ 1, . . . , 0 be the unique Hamiltonian path of G. We
divide the proof in three cases: (i) the removed edges were both tree edges
of G; (ii) the removed edges were both path edges of G; (iii) the removed
edges were one tree edge and one path edge of G.

21

Figure 2: Possible scenarios for the Hamiltonian path H of a damaged watermark G′.
Dashed arrows indicate missing edges. Squares, solid circles and hollow circles represent
vertices whose out-degrees in G′ are, respectively, 0, 1 and 2. Three hollow circles close
together followed by a broken arrow (with a tilde in the middle) indicate subpaths of zero
or more edges. Each big rectangle encloses a maximal undamaged subpath of H, which
corresponds to a maximal backward-unbifurcated path to s ∈ V (G), i.e., an {s}-bup.

When two tree edges are missing. The easiest case is (i), as illustrated in
Figure 2(a). If only tree edges were removed, then the Hamiltonian path
of G is undamaged. Starting from the only vertex with out-degree zero in
G′, namely vertex 0, plug next subpath(G′, ∅,H) outputs Ĥ at once, never
making a single recursive call. Since Ĥ obviously produces the correct label-
ing of vertices of G, it is validated uneventfully by validate labels(G′, Ĥ) and
returned by the algorithm.

When two path edges are missing. Suppose now that (ii) holds. Since no tree
edges were removed, the only vertex with out-degree zero in G′ is vertex 0,

22

unless the path edge whose tail is 2n + 2 was one of the removed edges (we
recall that 2n + 2 has degree 1 in G). We therefore analyze two subcases,
according to whether or not (2n+ 2, 2n+ 1) was removed from E(G).

For the first subcase, suppose the removed path edges were (2n+2, 2n+1)
and (a, a − 1) for some integer a with 1 ≤ a ≤ 2n + 1, as in Figure 2(b).
Although vertex 2n + 2 has degree zero, its in-degree is greater than 1 in
G′ \ ∅ = G′, and therefore no {2n + 2}-bup is produced in the main call
to plug next subpath. Thus, the only partial path the algorithm produces,
starting from vertex 0 in backwards fashion, is Q′ = a − 1, a − 2, . . . , 0.
Because now a − 1 has no in-neighbors in G − V (Q′), it recurses to find
possible extensions for Q′. The only vertices with degree 0 or 1 in G′ \V (Q′)
are now 2n + 2 and a. However, any {2n + 2}-bup Q′′ that may be found
will constitute an H = Q′′||Q path that will necessarily fail the ensuing
validation. This is due to the fact that H[2n + 2] will be a vertex other
than Ĥ[2n + 2] = 2n + 2, an out-neighbor of n + 1 by Theorem 10—and
the first condition tested by validate labels(G′, H) cannot be met. Because
of this, the partial path Q′ can only be extended by an {a}-bup, which
can be no other but 2n + 1, . . . , a, and the remaining vertex 2n + 2 will
be concatenated during the next recursive call, completing the Hamiltonian
path 2n+ 2, 2n+ 1, . . . , a, a− 1, . . . , 0 = Ĥ, as desired.

In the second subcase, the path edge (2n + 2, 2n + 1) was not removed.
Suppose the missing edges are (a, a−1) and (b, b−1), with a < b, as illustrated
in Figure 2(c). The first, rightmost subpath located by the algorithm can
only be the unique {0}-bup, namely Q′ = a− 1, a− 2, . . . , 0. Now there are
three vertices whose degree are less than or equal to one: 2n+ 2, b and a.

When the algorithm considers {2n+ 2}-bups during the recursive call to
plug next subpath(G′−V (Q′), Q′||∅,H), whichever ensuing Hamiltonian path
candidate H it produces will necessarily be discarded. Indeed, if n + 1 ≥ a,
then no bup is even produced because the in-degree of 2n+ 2 in G′ − V (Q′)
is at least 2 by the existence of tree edges (n+ 1, 2n+ 2) and (2n+ 1, 2n+ 2);
and, if n + 1 < a, then H[n + 1] is vertex Ĥ[n + 1] = n + 1 itself and,
because its out-degree in G′ is already 2, conditions (1) and (2) checked by
validate labels(G′, H) cannot both be met.

When the algorithm considers a {b}-bup, whichever ensuing Hamiltonian
path candidate H it comes up with will also be discarded. Indeed, because
the subpath 2n+ 2, 2n+ 1, . . . , b of Ĥ is intact, vertex 2n+ 2 will be brought
into the {b}-bup before v does, for all b−1 ≥ v ≥ a, hence H[2n+2] 6= 2n+2.
Moreover, because in particular the tree edge whose tail is b−1, say (b−1, w),

23

was not removed, and w ≥ b, the only possible value for w is 2n+2, otherwise
there would be a vertex z ∈ {2n + 1, 2n, . . . , b} with in-degree greater than
1 in the subgraph of G′ induced by z and by the vertices to the left of z in
H, which is a contradiction because such path would have been discarded in
the last line of Algorithm 2. Thus, vertex b − 1 is an in-neighbor of 2n + 2
which was not added to the path before 2n + 2 was added. If a backward
bifurcation has not arisen, then it is only possible that b − 1 is precisely
the vertex to the left of 2n + 2 in H. Repeating the same argument—
based on the fact that the tree edge whose tail is v has not been removed—
for all b − 2 ≥ v ≥ a, we can infer that the only possible Hamiltonian
path candidate produced by the concatenation of a {b}-bup to the left of
Q′ is H = a, a + 1, . . . , b − 1, 2n + 2, 2n + 1, . . . , b, a − 1, a − 2, . . . 0. Now,
condition (1) in validate labels enforces that H[n + 1] is the tail of a tree
edge pointing to H[2n + 2] = a. However, because H[n + 1] > a, such edge
cannot be an actual tree edge of the original graph G, hence it must be a
path edge. Since the only path edge with head a in G is a + 1, it follows
that H[n + 1] = a + 1. And here we shall have a contradiction, since a + 1
is the second vertex, left to right, in H (i.e., H[2n + 1] = n + 1), unless
a = b − 1. However, if a = b − 1, then H[n + 1] = b, and the existence of
edge (b, a) = (H[n+ 1], H[2n+ 2]) is necessary to meet condition (1) in the
validation procedure. But (b, a) = (b, b − 1) is one of the removed edges,
therefore it must be reinserted. Condition (2), on its turn, requires that an
outgoing edge is added to 2n+ 2 (whose degree is 1 and whose index i in H
satisfies 2n+1 ≥ i ≥ 1). Along with the plausible path edge (b, a−1), which
was required to concatenate the {b}-bup to the left of Q′, we have a total of
3 new edges, thus violating condition (3).

Finally, when the algorithm considers {a}-bups, it necessarily produces
the subpath Q′′ = b − 1, . . . , a, which is concatenated to Q′, and, because
{2n+2}-bups cannot possibly yield a valid prefix to Q′′||Q′, the last recursive
call can only produce the {b}-bup 2n+ 2, . . . , b, reconstituting Ĥ.

When a tree edge and a path edge are missing. We focus on the final case
(iii), where one path edge and one tree edge were removed. We now consider
three subcases separately. In the first one, both the path edge and the tree
edge that were removed share the same tail endpoint. In the second one, the
tails of the removed edges are distinct. The third case is a special case of the
second one, when the tail of the removed path edge is 2n+ 2.

For the first subcase, illustrated in Figure 2(d), say both removed edges

24

have tail a ∈ V (G′). In this case, vertex a presents degree zero, just like
vertex 0 itself. Any attempts to build a Hamiltonian path H whose suffix is
an {a}-bup, however, shall not succeed. Since vertex 2n+ 2 will be brought
into H before vertex 0 does, and because a will be the rightmost vertex in H
(i.e., H[0] = a), a tree edge leaving 2n+2 is necessary to satisfy condition (2)
of validate labels(G′, H). But vertex 0 appears with index i > 0 in H, and
therefore a plausible path edge must be inserted with 0 as its tail. If the
index of 0 is not 2n+2, then a tree edge leaving 0 is also called for. If, on the
other hand, the index of 0 is 2n+ 2, then, among the two tree edges reaching
H[2n+ 2] = 0 that are required by condition (1) of the validation procedure,
at least one of them is still missing. In both cases, condition (3) is violated.

The second case is the one depicted in Figure 2(e), where a path edge
(a, a − 1), with 1 < a ≤ 2n + 1, and a tree edge (b, v), with v > b,
were removed. Procedure plug next subpath starts by gathering the maxi-
mal backward-unbifurcated path Q′ whose head is 0, the only vertex with
degree zero in G′. The leftmost vertex of such {0}-bup is vertex a − 1, the
first vertex whose in-degree is zero in the subgraph of G′ induced by ver-
tices not in Q′, and hence Q′ = a − 1, a − 2, . . . , 0. Now three vertices have
out-degree less than or equal to one: 2n+ 2, b and a.

When the algorithm picks 2n+ 2 as a possible continuation of the back-
ward path under construction, the index of 2n + 2 in H will be a. By
Theorem 10, vertex 2n + 1 is always a child of the root 2n + 2 in the rep-
resentative tree T of a canonical reducible permutation graph G, and, by
Property 2, the number of children v ≤ 2n of 2n + 2 in T corresponds to
the number n1 of digits 1 in the binary representation B of the identifier ω
encoded by G. As a consequence, the in-degree of 2n + 2 in G is n1 + 1.
We now tackle two distinct situations. In the first one, a ≤ n + 1, whereas
in the second one a > n + 1. If a ≤ n + 1, then the in-degree of 2n + 2 in
G′ − V (Q′) is the same as in G′ (i.e., n1), since all in-neighbors of 2n + 2
belong to {n+ 1, . . . , 2n+ 1} by the same Theorem 10. Because, along with
the path edge (a, a−1), only one tree edge was removed from G to obtain G′,
the in-degree of 2n+ 2 in G′ is at least n1 + 1− 1 = n1. As a consequence, a
backward bifurcation would be noticed on 2n+ 2 unless n1 = 1 and the tail
b of the removed tree edge is one of the in-neighbors of 2n+ 2, which in this
case are n+1 and 2n+1. If b = n+1, then the tree edge e = (2n+1, 2n+2)
is intact, and the only possible placement of vertex 2n + 1 in H is at the
position immediately to the left of 2n+ 2, so that e functions as a path edge
of H. Assuming there was no backward bifurcation on 2n+ 2 (which would

25

have caused the path H to be discarded), the only possible tree edge leav-
ing 2n is (2n, 2n + 1), hence 2n must be placed to the left of 2n + 1 in H.
Assuming, similarly, that no backward bifurcation occurred on 2n + 1, the
only possible tree edge leaving 2n − 1 is (2n − 1, 2n), and so on. This rea-
soning must continue until finally a is concatenated at the very first position
of H, yielding H = a, a + 1, . . . , 2n + 2, a − 1, a − 2, . . . , 0. Now, condition
(1) of the validation procedure requires that H[n + 1] and H[2n + 1] are
in-neighbors of H[2n+ 2] = a. However, this requirement and condition (2)
cannot both be met without violating condition (3), because, since those two
vertices H[n+ 1] and H[2n+ 1] are not in Q′, they are certainly greater than
a, but there is only one vertex in G which is greater than a and is an in-
neighbor of a, namely a+1. Therefore an extra tree edge is required, but one
extra edge is also required by condition (2)—a tree edge leaving b—and the
plausible path edge (2n + 2, a− 1) had already been inserted, which breaks
condition (3). We are left with the possibility that the tail of the removed
tree edge was b = 2n+ 1. In this case, the tree edge (n+ 1, 2n+ 2) is intact,
and the vertex immediately to the left of 2n + 2 in H must be n + 1. Now,
since path edge (n + 2, n + 1) is not the missing one by hypothesis, vertex
n + 2 must be immediately to the left of n + 1 in H, and, since path edge
(n+ 3, n+ 2) is not the missing one, vertex n+ 3 must appear immediately
to the left of n + 2, and so on, until b = 2n + 1 is concatenated at the first
position of H, yielding H = 2n + 1, 2n, . . . , a, 2n + 2, a− 1, a− 2, . . . , 0. To
satisfy condition (1) of the validation, vertex H[n+1] must be an in-neighbor
of H[2n + 2] = 2n + 1. But, because n1 = 1 (ω is a power of 2), the root of
its Type-2 representative tree has only two children, which allows item (iii)
in the definition of Type-2 trees (Definition 8) to assure that 2n+ 1 has only
one child, and this child is not n + 1, by item (i) of that same definition.
Thus, the tree edge (H[n+ 1], 2n+ 1) must be added to satisfy condition (1)
of validate labels(G′, H), and the only vertices with out-degree 1 in G′ were b,
which is 2n+ 1 itself, 2n+ 2, which was already added a plausible path edge
connecting it to a− 1, and a. It is therefore only possible that H[n+ 1] = a,
that is, the missing path edge is necessarily (n + 1, n). And here is where
condition (4) of the validation procedure comes into play, enforcing that the
root H[2n+ 2] presents only two children when ω is a power of 2. Since that
is not the case for the path H so obtained, as can be easily checked, H is
discarded. The second situation is the one in which a > n + 1. This one is
easy, since now H[n+ 1] = n+ 1, which is the tail of a tree edge pointing to
2n+2 6= H[2n+2], and hence conditions (1) and (2) of the validation cannot

26

both be met, unless such tree edge is precisely the one tree edge that was
removed. But that would correspond to the subcase shown in Figure 2(d),
which we already tackled.

When the algorithm picks b as the head of the first subpath to extend
the {0}-bup Q′, all ensuing Hamiltonian path candidates shall be discarded
by similar reasons. Finally, when it considers the sound continuation a, all
conditions obviously pass and Ĥ is delivered.

The third—and last—possible situation is the one depicted in Figure 2(f),
where the removed edges were the path edge (2n+ 2, 2n+ 1) and a tree edge
(b, v), with v > b. There are two vertices with degree zero: 0 and 2n + 2.
When the call to plug next subpath(G′, ∅,H) picks 2n + 2 as the rightmost
vertex of Q′, the leftmost vertex of whatever Hamiltonian path H it produces
must be either 0 or b, the only vertices with out-degree less than 2 in G′ (part
of the second condition verified by validate labels). Moreover, the root of the
representative tree of G must have only two children (which means n1 = 1,
or, equivalently, the identifier ω encoded by G is a power of 2), and b must be
either 2n+ 1 or n+ 1, so that a backward bifurcation does not take place at
the very starting vertex H[0] = 2n+ 2. If H[2n+ 2] = 0, then at least three
extra edges are required to put H together and satisfy condition (1) of the
validation procedure: a plausible path edge (H[2n+2], H[2n+1]), and at least
two tree edges, namely (H[2n+ 1], H[2n+ 2]) and (H[n+ 1], H[2n+ 2]). But
then, of course, condition (3) is violated. If H[2n+ 2] = b = n+ 1, then the
vertex immediately to the left of H[0] = 2n+ 2 in H must be H[1] = 2n+ 1,
and the next vertex right-to-left must be H[2] = 2n and so on, assuming
no backward bifurcations took place, until at least vertex H[n] = n + 2. To
put it differently, the {2n + 2}-bup Q′ considered initially by the algorithm
contains (not necessarily properly, depending on whether there was a tree
edge pointing to n+ 2 in G′) the suffix Q′ = n+ 2, n+ 3, . . . 2n+ 2. Now, no
matter which vertex w occupies the (n + 1)th position (right-to-left) in H,
it was certainly not an in-neighbor of H[2n+ 2] = n+ 1, because n+ 1 does
not have in-neighbors in Type-2 trees (and in Type-1 trees neither, for that
matter). If w 6= 0, then w has out-degree 2, and conditions (1) and (2) of the
validation procedure cannot both be met. If, on the other hand, w = 0, then
H is the concatenation of Q′ with the prefix n+ 1, n, n− 1, . . . , 0, an intact
subpath of Ĥ. In this case, vertex H[2n + 1] is n, a vertex with out-degree
2 in G′ which is not an in-neighbor of H[2n+ 2] = n+ 1, and conditions (1)
and (2), again, cannot both be met.

The verification of the time complexity is straightforward. 2

27

6 5 4 3 2 1 0

6 5 4 3 2 1 0

6

3

2

5

4

1 4

6

3

2

5

1 4

6

3 5

1 2

4

6

3 5

1 2

(a)

(b) (c)

(d) (e) (f)

Figure 3: (a) The watermark G1 for identifier ω = 2; (b) its representative tree T1;
(c) the damaged representative tree T ′

1 = T1 − {(1, 5), (4, 5)}; (d) the watermark G2

for identifier ω = 3; (e) its representative tree T2; (f) the damaged representative tree
T ′
2 = T2 − {(1, 4), (4, 6)}. Note that T ′

1 and T ′
2 are isomorphic.

6. Final considerations

Relying on the characterization of canonical reducible permutation graphs
given in [1], we were able to formulate a linear-time algorithm which succeeds
in retrieving deterministically the n-bit identifiers encoded by such graphs
(with n > 2) even if k ≤ 2 edges are missing. Such bound is the best possible,
since there are plenty of watermark instances whose edge sets differ in no more
than three edges. That is obviously not the case for only two edges, otherwise
our algorithm would not have been possible. Indeed, the sole example of two
canonical reducible permutation graphs which may become isomorphic to one
another when each graph is deprived of only two edges occurs when n = 2,
as illustrated in Figure 3. An interesting open problem is to characterize the
maximum sets Ω(n, k) of n-bit identifiers, such that, for all ω1, ω2 ∈ Ω(n, k),
the corresponding watermarks G1, G2 satisfy

|E(G1) \ E(G2)| = |E(G2) \ E(G1)| ≤ k.

For the time being, we know that Ω(2, 2) = {2, 3}, and Ω(n, 2) = ∅ for
n > 2. We also know, as pointed out in the proof of Corollary 16, that
{2n−1, 2n−1 + 1} ⊆ Ω(n, 3) for n > 3. Furthermore, computational results

28

Table 1: The first columns show the ratio r(n, k) = |Ω(n, k)| / |Ω(n)| between |Ω(n, k)|,
the number of canonical reducible permutation graphs encoding n-bit identifiers which
can become isomorphic to another such graph by the removal of k edges, and |Ω(n)|,
the total number of canonical reducible permutation graphs encoding n-bit identifiers, for
3 ≤ n ≤ 15 and 3 ≤ k ≤ 5; the remaining columns show the probability p(n, k) that a
canonical reducible permutation graph becomes irremediably damaged by the removal of
k edges chosen uniformly at random, for those same n and k.

n r(n, 3) r(n, 4) r(n, 5) p(n, 3) p(n, 4) p(n, 5)
3 50.00% 100.00% 100.00% 5.71429% 8.57143% 33.33333%
4 25.00% 100.00% 100.00% 2.38095% 2.57937% 5.09607%
5 50.00% 93.75% 100.00% 1.21212% 1.93182% 2.91899%
6 68.75% 90.62% 100.00% 0.69930% 1.23876% 1.92696%
7 81.25% 92.19% 98.44% 0.43956% 0.76190% 1.21360%
8 89.06% 94.53% 97.66% 0.29412% 0.47731% 0.75934%
9 93.75% 96.48% 98.05% 0.20640% 0.30999% 0.48427%
10 96.48% 97.85% 98.63% 0.15038% 0.20897% 0.31842%
11 98.05% 98.73% 99.12% 0.11293% 0.14571% 0.21637%
12 98.93% 99.27% 99.46% 0.08696% 0.10463% 0.15169%
13 99.41% 99.58% 99.68% 0.06838% 0.07707% 0.10939%
14 99.68% 99.77% 99.82% 0.05473% 0.05803% 0.08086%
15 99.83% 99.87% 99.90% 0.04449% 0.04453% 0.06108%

suggest that the ratio |Ω(n, k)| / |Ω(n)|—where Ω(n) is the set of all 2n canon-
ical reducible permutation graphs encoding n-bit identifiers—approaches 1
as k grows, which is rather intuitive. Interestingly, it also approaches 1 as n
grows, but that does not reduce the effectiveness of the Chroni-Nikolopoulos
watermark, since the growth of the number of subsets of k edges grows faster
(for small k as compared to n), so the success probability of an attack in the
form of a fixed number k of edge removals goes to zero as n goes to infinity
(see Table 1).

7. Acknowledgements

The authors would like to thank CAPES, CNPq and FAPERJ for par-
tially supporting this research.

29

References

[1] L.M.S. Bento, D.R. Boccardo, R.C.S. Machado, V.G. Pereira de Sá,
J.L. Szwarcfiter, Full characterization of a class of graphs tailored for
software watermarking, submitted to Journal of Computer and System
Sciences, 2014.

[2] L.M.S. Bento, D.R. Boccardo, R.C.S. Machado, V.G. Pereira de Sá, J.L.
Szwarcfiter, Towards a provably resilient scheme for graph-based water-
marking, Proc. 39th International Workshop on Graph-Theoretic Con-
cepts in Computer Science, WG’13, LNCS 8165 (2013), 50–63, arXiv:
1302.7262v6 [cs.MM].

[3] M. Chroni, S.D. Nikolopoulos, Efficient encoding of watermark numbers
as reducible permutation graphs, arXiv:1110.1194v1 [cs.DS], 2011.

[4] M. Chroni, S.D. Nikolopoulos, An efficient graph codec system for soft-
ware watermarking, Proc. 36th IEEE Conference on Computers, Soft-
ware and Applications, COMPSAC’12, IEEE Proc. (2012), 595–600.

[5] C. Collberg, S. Kobourov, E. Carter, C. Thomborson, Error-correcting
graphs for software watermarking, Proc. 29th Workshop on Graph-
Theoretic Concepts in Computer Science, WG’03, LNCS 2880 (2003),
156–167.

[6] C. Collberg, C. Thomborson, G. Townsend, Dynamic graph-based soft-
ware fingerprinting, ACM Trans. Programming Languages and Systems
29 (2007), 1–67.

[7] C. Collberg, A. Huntwork, E. Carter, G. Townsend, M. Stepp, More
on graph theoretic software watermarks: implementation, analysis and
attacks, Information and Software Technology 51 (2009), 56–67.

[8] R. L. Davidson, N. Myhrvold, Method and system for generating and
auditing a signature for a computer program, US Patent 5.559.884, Mi-
crosoft Corporation (1996).

[9] M.S. Hecht and J.D. Ullman, Flow graph reducibility, SIAM Journal of
Computing 1 (1972), 188–202.

[10] M.S. Hecht and J.D. Ullman, Characterizations of reducible flow graphs,
Journal of the ACM 21 (1974), 367–375.

30

[11] R.E. Tarjan, Testing flow graph reducibiliy, Journal of Computer and
System Sciences 9 (1974), 355–365.

[12] R. Venkatesan, V. Vazirani, Technique for producing through water-
marking highly tamper-resistant executable code and resulting water-
marked code so formed (2006), Microsoft Corporation, US Patent:
7051208.

31

