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Abstract

Digital watermarks have been regarded as a promising way to fight
copyright violations in the software industry. In some graph-based
watermarking schemes, identification data is disguised as control-flow
graphs of dummy code. Recently, Chroni and Nikolopoulos proposed
an ingenious such scheme whereby an integer is encoded into a par-
ticular kind of permutation graph. We give a formal characterization
of the class of graphs generated by their encoding function, which we
call canonical reducible permutation graphs. A linear-time recognition
algorithm is also given, setting the basis for a polynomial-time algo-
rithm to restore watermarks that underwent the malicious removal of
some edges. Finally, we give a simpler decoding algorithm for Chroni
and Nikolopoulos’ watermarks.

Keywords: linear-time algorithms, reducible permutation graphs,
digital watermarking, software security

1 Introduction

The illegal reproduction of software has become a major concern for the
industry. According to the Business Software Alliance, the commercial value
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of unlicensed software put into the world market every year exceeds 60 billion
dollars [3]. To counter such practice, many promising methods have been
devised, among which the idea of software watermarking.

The use of paper watermarks to prevent counterfeiting dates back to the
thirteenth century. Generally speaking, watermarks are unique identifiers
embedded into proprietary objects to enforce authenticity. In a digital ob-
ject, particularly in a piece of software, a watermark may act not only as a
certificate of authorship, but also as a means of tracing the original owner
of the object, therefore discouraging piracy.

The first software watermark was proposed in 1996 by Davidson and
Myrhvold [14], while the first watermarking scheme to exploit concepts
of Graph Theory was formulated by Venkatesan, Vazirani and Sinha [23]
in 2001. Their technique, whereby an integer was encoded as a special
digraph to be disguised into the software’s control-flow graph, was later
patented [24]. Other original ideas, improvements and surveys on the avail-
able methods have been contributed by many authors ever since. See, for
example, [10, 11, 12, 15, 21, 26, 27].

Willing to prevent the timely retrieval of the encoded identification data,
malicious agents may attempt to tamper with the watermark. A watermark
solution is therefore only as secure as it is able to resist attacks of various
sorts. Naturally, a lot of research has been put up lately towards developing
more resilient solutions as well as strengthening existing ones. This paper
pursues this latter goal.

We consider the graph-based watermarking scheme introduced by Coll-
berg, Kobourov, Carter and Thomborson [10], and afterwards developed and
improved upon by Chroni and Nikolopoulos in a series of papers [4, 5, 6, 7, 8].
These latter authors proposed a watermark graph belonging to a subclass of
the reducible permutation graphs introduced by the former authors. Though
the mechanics of encoding and decoding the proposed watermark is well de-
scribed in [6], such special subclass of reducible permutation graphs has not
been fully characterized. We provide such a characterization, based solely
on the topology of the graph, along with a linear-time recognition algo-
rithm. From an application standpoint, the recognition algorithm allows for
the polynomial-time recovery of watermarks that have undergone the ma-
licious removal of a some edges, whenever that is at all possible (otherwise
the algorithm outputs a list of all watermarks that could have originated
the tampered-with watermark at hand). On a minor note, we formulate a
simpler linear-time decoding algorithm for Chroni and Nikolopoulos’s wa-
termarks.

This paper is organized as follows. In Section 2, we present some prelim-
inary concepts related to graph-based software watermarking, including the
most common forms of attacks. In Section 3, we recall the watermark from
Chroni and Nikolopoulos, and we state a number of structural properties,
the proofs of which we delay until Section 7 for the sake of readability. In
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Section 4, we define and characterize the family of canonical reducible per-
mutation graphs, which correspond to the watermarks produced by Chroni
and Nikolopoulos’s encoding function.

In Section 5, we propose a robust polynomial-time algorithm that, given
a watermark with whatever constant number k of missing edges, either re-
covers the encoded data or proves that the watermark has become irreme-
diably damaged. In Section 6, we formulate a simpler linear-time decoding
algorithm.

Finally, Section 7 contains the postponed proofs for the properties stated
in Section 3, and Section 8 concludes the paper with our final remarks.

Throughout the text, we let V (G) and E(G) respectively denote, as
usual, the vertex set and edge set of a given graph G. Also, we let N+

G (v)
and N−G (v) be the sets of out-neighbors and in-neighbors of vertex v in G,
with d+G(v) and d−G(v) their respective sizes. If J is a subset of either V (G) or
E(G), then G−J corresponds to the graph obtained from G by the removal
of J .

2 Graph-based software watermarking

Software watermarking schemes provide the necessary means of embedding
identification data—typically a copyright notice or a customer number—
into a piece of software. We refer to the identification data as the identifier,
and we may regard it as an integer, for simplicity. In short, software water-
marks are appropriate embeddings of surreptitious identifiers into computer
programs, and they can be broadly divided into two categories: static and
dynamic [9]. The former are embedded in the code, whereas the latter are
embedded into the program’s execution state at runtime.

A static, graph-based watermarking scheme usually consists of four algo-
rithms:

• an encoder, which converts the identifier into a graph—the watermark;

• an embedder, a function whose input parameters are the software it-
self (either the binary code or the source code in some programming
language), the intended watermark, and possibly some secret key, and
whose output is a modified software containing the watermark;

• an extractor, which retrieves the watermark graph from the water-
marked software; and

• a decoder, which extracts the identifier from the watermark;

To every computer program one can associate a directed graph represent-
ing the possible sequences of instructions, where each vertex corresponds to
a maximal block of contiguous instructions. Such graph, called the control-
flow graph (CFG) of the software [1], can be obtained by means of static
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analysis [18, 25]. What the embedder does is basically to insert dummy code
into the program so that the intended watermark graph shows up as an in-
duced subgraph of the CFG. The position of the watermark graph within
the CFG is often determined as a function of a secret key. Knowledge-
able of the secret key, the extractor retrieves that subgraph, which is then
passed along to the decoding algorithm. Among the existing tools for em-
bedding/extracting graph-based watermarks, we cite Collberg’s SandMark
project [13]. In this paper, we focus on the encoding/decoding algorithms
described by Chroni and Nikolopoulos in [6].

Attacks Among the several different kinds of attacks against graph-based
watermarks, we list the following:

• additive attacks, in which other watermarks are inserted into the same
object, generating ambiguity;

• subtractive attacks, in which the watermark is removed altogether; and

• distortive attacks, in which the watermark graph is modified to con-
found the decoder.

Additive and subtractive attacks can be precluded to a great extent by
techniques of cryptography and software diversity [20]. On the other hand,
distortive attacks—also known as jamming attacks—are more difficult to
deal with. In some cases, the distortive attacker may even be able to reverse
engineer the entire code and apply semantics-preserving modifications which
modify the CFG structurally without affecting the software’s functionalities.
Distortive attacks are arguably the most important attack model one should
worry about [23].

The algorithm described in Section 5 targets watermarks that were sub-
ject to distortive attacks in the form of edge removals. The removal of an
edge can be attained by simply replacing a jump instruction with a NOP
code (a void instruction). Although it is conceivable that the attacker inserts
edges into the graph, in practice the addition of jumps to arbitrary locations
in the program’s binaries (making new edges appear on the CFG) is very
likely to cause a program crash. The same goes for the insertion or removal
of vertices, where the attacker would have to fix all the instructions’ offsets
in order to keep the functionalities of the program intact, which would be
all but trivial.

3 The watermark from Chroni and Nikolopoulos

We recall the encoding algorithm described in [6]. The index of the first
element in all considered sequences is 1.
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Let ω be a positive integer identifier, and n the size of the binary repre-
sentation B of ω. Let also n0 and n1 be the number of 0’s and 1’s, respec-
tively, in B, and let f0 be the index of the leftmost 0 in B. The extended
binary B∗ is obtained by concatenating n digits 1, followed by the one’s
complement of B and by a single digit 0. We let n∗ = 2n+ 1 denote the size
of B∗, and we define Z0 = (z0i ), i = 1, . . . , n1 + 1, as the ascending sequence
of indexes of 0’s in B∗, and Z1 = (z1i ), i = 1, . . . , n+ n0, as the ascending
sequence of indexes of 1’s in B∗.

Let S be a sequence of integers. We denote by SR the sequence formed
by the elements of S in backward order. If S = (si), for i = 1, . . . , t,
and there is an integer k ≤ t such that the subsequence consisting of the
elements of S with indexes less than or equal to k is ascending, and the
subsequence consisting of the elements of S with indexes greater than or
equal to k is descending, then we say S is bitonic. If all t elements of a
sequence S are distinct and belong to {1, . . . , t}, then S is a permutation.
If S is a permutation of size t, and, for all 1 ≤ i ≤ t, the equality i = ssi
holds, then we say S is self-inverting. In this case, the unordered pair (i, si)
is called a 2-cycle of S, if i 6= si, and a 1-cycle of S, if i = si. If S1, S2 are
sequences (respectively, paths in a graph), we denote by S1||S2 the sequence
(respectively, path) formed by the elements of S1 followed by the elements
of S2.

Back to Chroni and Nikolopoulos’s algorithm, we define Pb = (bi), with
i = 1, . . . , n∗, as the bitonic permutation Z0||ZR

1 . Finally, the self-inverting
permutation Ps = (si) is obtained from Pb as follows: for i = 1, . . . , n∗, ele-
ment sbi is assigned value bn∗−i+1, and element sbn∗−i+1

is assigned value bi.
In other words, the 2-cycles of Ps correspond to the n unordered pairs of
distinct elements of Pb that share the same minimum distance to one of the
extremes of Pb, that is, the pairs (p, q) = (bi, bn∗−i+1), for i = 1, . . . , n. Since
the central index i = n+ 1 of Pb is the solution of equation n∗ − i+ 1 = i,
element bn+1 — and no other — will constitute a 1-cycle in Ps. We refer to
such element of Ps as its fixed element, and we let f denote it.

The watermark generated by Chroni and Nikolopoulos’s encoding algo-
rithm [6] is a directed graph G whose vertex set is {0, 1, . . . , 2n + 2}, and
whose edge set contains 4n + 3 edges, to wit: a path edge (u, u − 1) for
u = 1, . . . , 2n + 2, constituting a Hamiltonian path that will be unique in
G, and a tree edge from u to q(u), for u = 1, . . . , n∗, where q(u) is defined
as the vertex v > u with the greatest index in Ps to the left of u, if such v
exists, or 2n+ 2 otherwise. The rationale behind the name tree edge is the
fact that such edges induce a spanning tree of G \ {0}.

Let us glance at an example. For ω = 43, we have B = 101011, n = 6,
n0 = 2, n1 = 4, f0 = 2, B∗ = 1111110101000, n∗ = 13, Z0 = (7, 9, 11, 12, 13),
Z1 = (1, 2, 3, 4, 5, 6, 8, 10), Pb = (7, 9, 11, 12, 13, 10, 8, 6, 5, 4, 3, 2, 1), Ps = (7, 9,
11, 12, 13, 10, 1, 8, 2, 6, 3, 4, 5) and f = 8. The watermark graph associated to
ω presents, along with the path edges in the Hamiltonian path 14, 13, . . . , 0,
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Figure 1: Watermark for identifier ω = 43.

the tree edges (1, 10), (2, 8), (3, 6), (4, 6), (5, 6), (6, 8), (7, 14), (8, 10), (9, 14),
(10, 13), (11, 14), (12, 14) and (13, 14), as illustrated in Figure 1.

3.1 Structural properties

We now state a number of properties concerning the watermark from Chroni
and Nikolopoulos and the special permutations they are associated to. These
properties, whose proofs are given in Section 7, set the basis for the charac-
terization of the class of canonical reducible permutation graphs, which is
given in Section 4.

For all properties stated below, let G be the watermark graph associated
to an identifier ω of size n, and let Pb and Ps be, respectively, the bitonic
and the self-inverting permutations dealt with during the construction of G.

Property 1. For 1 ≤ i ≤ n, the element bn+i+1 in Pb is equal to n− i+ 1,
that is, the n rightmost elements in Pb, from right to left, are 1, . . . , n.

Property 2. The elements with indexes 1, . . . , n in Ps are all greater than n.

Property 3. The fixed element f satisfies f = n+ f0, unless the identifier
ω is equal to 2k − 1 for some integer k, whereupon f = n∗ = 2n+ 1.

Property 4. In self-inverting permutation Ps, elements indexed 1, . . . ,
f − n − 1 are respectively equal to n + 1, n + 2, . . . , f − 1, and elements
indexed n+ 1, n+ 2, . . . , f − 1 are respectively equal to 1, . . . , f − n− 1.

Property 5. The first element in Ps is s1 = n+ 1, and the central element
in Ps is sn+1 = 1.

Property 6. If f 6= n∗, then the index of element n∗ in Ps is equal to n1+1,
and vice-versa. If f = n∗, then the index of element n∗ in Ps is also n∗.

Property 7. The subsequence of Ps consisting of elements indexed 1, . . . ,
n+ 1 is bitonic.

Property 8. For u ≤ 2n, (u, 2n+ 2) is a tree edge of watermark G if, and
only if, u− n is the index of a digit 1 in the binary representation B of the
identifier ω represented by G.

Property 9. If (u, k) is a tree edge of watermark G, with k 6= 2n+ 2, then

(i) element k precedes u in Ps; and

(ii) if v is located somewhere between k and u in Ps, then v < u.

6



4 Canonical reducible permutation graphs

This section is devoted to the characterization of the class of canonical re-
ducible permutation graphs. After describing some terminology and proving
some preliminary results, we define the class using purely graph-theoretical
predicates. Then, we show it corresponds exactly to the set of watermarks
produced by Chroni and Nikolopoulos’s encoding algorithm [6]. Finally, we
characterize it in a way that allows for efficient algorithms to recover from
distortive attacks.

A reducible flow graph [16, 17, 22] is a directed graph G with a source
s ∈ V (G), such that, for each cycle C of G, every directed path from s to C
reaches C at the same vertex. It is well known that a reducible flow graph
has at most one Hamiltonian cycle [10].

Definition 10. A self-labeling reducible flow graph is a directed graph G
such that

(i) G presents exactly one directed Hamiltonian path H, hence there is
a unique labeling function σ : V (G) → {0, 1, . . . , |V (G)| − 1} of the
vertices of G such that the order of the labels along H is precisely
|V (G)| − 1, |V (G)| − 2, . . . , 0; and,

(ii) considering the labeling σ as described, N+
G (0) = ∅, N−G (0) = {1},

N+
G (|V (G)| − 1) = {|V (G)| − 2}, |N−G (|V (G)| − 1)| ≥ 2, and, for all

v ∈ V (G) \ {0, |V (G)| − 1}, N+
G (v) = {v − 1, w}, for some w > v.

From now on, without loss of generality, we shall take σ for granted and
assume the vertex set of any self-labeling reducible flow graph G is the very
set V (G) = {0, 1, . . . , |V (G)|−1}. By doing so, we may simply compare two
vertices, e.g. v > u (or v greater than u, in full writing), whereas we would
otherwise need to compare their images under σ, e.g. σ(v) > σ(u).

Definition 11. The representative tree T of a self-labeling reducible flow
graph G with Hamiltonian path H has vertex set V (T ) = V (G)\{0} and edge
set E(T ) = E(G) \ E(H), where all edges are deprived of their orientation.

First of all, note that T is indeed acyclic (the ascending order of its
vertices’ labels constitutes a trivial topological sort) and connected (there is
only one sink, namely vertex —V(G)—-1). A representative tree T is always
regarded as a rooted tree whose root is |V (G)| − 1, Moreover, it is regarded
as an ordered tree, that is, for each v ∈ V (T ), the children of v are always
considered according to an ascending order of their labels. For v ∈ T , we
denote by N∗T (v) the set of descendants of v in T . Figure 2 depicts two
representative trees.

Observation 12. The representative tree T of a self-labeling reducible flow
graph G satisfies the max-heap property, that is, if vertex u is a child of
vertex v in T , then v > u.
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Figure 2: Representative trees of the watermark graphs produced by Chroni
and Nikolopoulos’s encoding algorithm for identifiers (a) ω = 31 and (b)
ω = 43 (the full watermark for ω = 43 is shown in Figure 1). It is easy to
check that such graphs are self-labeling reducible flow graphs.

Proof: Direct from the way T is rooted and from property (ii) in the
definition of self-labeling reducible flow graphs, whereby the in-neighbors of
w in G \ E(H) comprise only vertices v < w. We convey the idea that a
representative tree T satisfies the max-heap property by saying that T is a
descending, ordered, rooted tree. 2

Definition 13. Let S = (si), i = 1, . . . , 2n+ 1, be a self-inverting permuta-
tion. We say S is canonical if:

(i) there is exactly one 1-cycle in S;

(ii) each 2-cycle (si, sj) of S satisfies 1 ≤ i ≤ n, for si > sj;

(iii) s1, . . . , sn+1 is a bitonic subsequence of S starting at s1 = n + 1 and
ending at sn+1 = 1.

Lemma 14. In any canonical self-inverting permutation, the fixed element
f satisfies f ∈ [n+ 2, 2n+ 1].

Proof: By property (ii) of canonical self-inverting permutations, each 2-
cycle of S must contain at least one element whose index i satisfies 1 ≤ i ≤ n.
From property (i), and given the size of S, it follows that the number of 2-
cycles in S is n, hence, by the pigeonhole principle, each and every 2-cycle in
S contains exactly one such element si with 1 ≤ i ≤ n. But this means the
other element in each 2-cycle, namely sj , satisfies sj ∈ [n+ 1, 2n+ 1]. Since
there are n+ 1 values in that range and only n such elements sj , there must
be exactly one element sk ∈ [n + 1, 2n + 1] which is not part of a 2-cycle,
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and therefore sk = f . Now, by property (iii), n + 1 = s1, hence f 6= n + 1,
and the lemma follows. 2

Let T be a representative tree. The preorder traversal P of T is a se-
quence of its vertices that is recursively defined as follows. If T is empty, P
is also empty. Otherwise, P starts at the root r of T , followed by the pre-
order traversal of the subtree whose root is the smallest child of r, followed
by the preorder traversal of the subtree whose root is the second smallest
child of r, and so on. The last (rightmost) element of P is also referred to
as the rightmost element of T .

Lemma 15. The preorder traversal of a representative tree T is unique.
Conversely, a representative tree T is uniquely determined by its preorder
traversal.

Proof: We use induction on |V (T )|. If |V (T )| ≤ 1, the lemma holds
trivially. Let |V (T )| > 1, and let vk be the uniquely defined leaf of T for
which the path v1, . . . , vk from the root v1 of T to vk has the property that
each vi, for 1 < i ≤ k, is the greatest vertex among the children of v − 1.
By the induction hypothesis, the preorder traversal P ′ of T \{vk} is unique.
Because vk is necessarily the rightmost vertex of T , the preorder traversal
P of T is uniquely determined as P ′||vk.

Conversely, let P be a preorder traversal of some representative tree
T . If |P | ≤ 1, there is nothing to prove. Otherwise, suppose the lemma
holds for preorder traversals of size ≤ k, and consider |P | = k. Let vk be
the rightmost element of P . Clearly, vk must be a leaf of T , and also the
rightmost (i.e., greatest) vertex among the children of its parent. Now define
P ′ = P −{vk}. By the induction hypothesis, there is a unique tree T ′ whose
preorder traversal is P ′. Let vk−1 be the rightmost element of P ′. We obtain
T from T ′, by making vk the rightmost child of the smallest ancestor vj of
vk−1 satisfying vj > vk, so P is clearly the preorder traversal of T . Since no
other parent for vk would be possible without breaking the ascending order
of siblings in a representative tree, T is uniquely defined by P . 2

The first element of the preorder traversal P of a tree T is always its
root. If we remove the first element of P , the remaining sequence is said to
be the root-free preorder traversal of T .

We can now define the class of canonical reducible permutation graphs.

Definition 16. A canonical reducible permutation graph G is a self-labeling
reducible flow graph on 2n + 3 vertices, for some integer n ≥ 1, such that
the root-free preorder traversal of the representative tree of G is a canonical
self-inverting permutation.

Lemma 17. If G is a watermark instance produced by Chroni and Nikolopou-
los’s encoding algorithm [6], then G is a canonical reducible permutation
graph.
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Proof: Recall, from Section 3, that the watermark graph G associated
to identifier ω, whose binary representation B has size n, is constructed
with vertex set V (G) = {0, . . . , 2n+ 2} and an edge set E(G) which can be
partitioned into path edges and tree edges in such a way that all conditions
in the definition of self-labeling reducible flow graphs are satisfied, as can
be easily checked. Now, by Property 9 of Chroni and Nikolopoulos’s wa-
termarks (see Section 3.1), the tree edges of G constitute a representative
tree T of G whose root-free preorder traversal is precisely the self-inverting
permutation Ps determined by the encoding algorithm from [6] as a func-
tion of B. Consequently, what is left to prove is that Ps is canonical. The
first condition to Ps being canonical is asserted by Property 3 in Section 3.1
(the fixed element f corresponds to the unique 1-cycle in Ps); the second
condition is given by Property 2; and, finally, Properties 5 and 7 fulfill the
third condition, therefore Ps is canonical. 2

Lemma 18. If G is a canonical reducible permutation graph, then G is the
watermark produced by Chroni and Nikolopoulos’s encoding algorithm [6] for
some integer identifier ω.

Proof: Let G be a canonical reducible permutation graph, and T its
representative tree. By Lemma 15, T is uniquely defined by its preorder
traversal P . We show that P corresponds to the self-inverting permutation
Ps generated by the encoding algorithm of [6] (please refer to Section 3 for
details) when computing the watermark for some integer identifier ω. By def-
inition, P = (si), i = 1, . . . , 2n+ 1, is a canonical self-inverting permutation
presenting a single 1-cycle f and a number n of 2-cycles (p, q). Those 2-cycles
(p, q) define exactly one bitonic permutation Pb = (bj), j = 1, . . . , 2n+1 sat-
isfying Property 1 of Chroni and Nikolopoulos’s watermarks with

(i) bn+1 = f , and,

(ii) for all j ∈ {1, . . . , n}, bj = p if and only if b2n+1−j = q.

Such bitonic permutation Pb can be regarded as Z0||ZR
1 by assigning to Z0

the prefix of Pb comprising its maximal ascending subsequence, and now
the indexes of 0’s and 1’s in the extended binary B∗ are totally determined.
We proceed by extracting the binary B that is the one’s complement of the
subsequence of B∗ with digits from the (n + 1)th to the (2n)th position
in B∗. Regarding B as the binary representation of a positive integer ω, the
image of such ω under the encoding function of Chroni and Nikolopoulos is
isomorphic to G. 2

We proceed to the last definitions before we can give an appropriate,
algorithmic-flavored characterization of canonical reducible permutation
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graphs. Let T be the representative tree of some canonical reducible permu-
tation graph G, and P a canonical self-inverting permutation corresponding
to the root-free preorder traversal of T . We refer to the fixed element f of P
also as the fixed element (or vertex) of both G and T . Similarly, the 2-cyclic
elements of P correspond to cyclic elements (or vertices) of both G and T .
A vertex v ∈ V (T ) \ {2n + 2} is considered large when n < v ≤ 2n + 1;
otherwise, v ≤ n and v is dubbed as small. Denote by X,Y , respectively,
the subsets of large and small vertices in T , so |X| = n+ 1 and |Y | = n. By
Lemma 14, f ∈ X. We then define Xc = X \ {f} = {x1, . . . , xn} as the set
of large cyclic vertices in T .

Definition 19. A representative tree T is a Type-1 tree — see Figure 3(a)
— if

(i) n+ 1, n+ 2, . . . , 2n+ 1 are children of the root 2n+ 2 in T ; and

(ii) 1, 2, . . . , n are children of 2n.

Definition 20. A representative tree T is a Type-2 tree relative to f — see
Figure 3(b) — if

(i) n + 1 = x1 < x2 < . . . < x` = 2n + 1 are the children of 2n + 2, for
some ` ∈ [2, n− 1];

(ii) xi > xi+1 and xi is the parent of xi+1, for all i ∈ [`, n− 1];

(iii) 1, 2, . . . , f − n− 1 are children of xn;

(iv) xi = n+ i, for 1 ≤ i ≤ f − n− 1;

(v) f is a child of xq, for some q ∈ [`, n] satisfying xq+1 < f whenever
q < n; and

(vi) N∗T (f) = {f−n, f−n+1, . . . , n} and yi ∈ N∗T (f) has index xyi−f+1
in the preorder traversal of N∗T [f ].

Lemma 21. If yr is the rightmost vertex of a Type-2 representative tree T
relative to some f 6= 2n+ 1, then yr is equal to the number ` of children of
the root 2n+ 2 in T .

Proof: By the definition of a Type-2 representative tree, the only non-
leaf child of the root 2n + 2 of T is its rightmost child x`, therefore each
child xi of 2n+ 2, for 1 ≤ i ≤ `, appears precisely at the ith position in the
root-free preorder traversal P of T . Since, by definition, P is self-inverting,
and yr is the last, (2n+ 1)th element of P , it follows that yr must be equal
to the index of 2n+ 1 = x` in P , that is, yr = `. 2

The following theorem characterizes canonical reducible permutation
graphs in terms of the above defined trees.
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Figure 3: (a) A Type-1 representative tree. (b) A Type-2 representative
tree.

Theorem 22. A digraph G is a canonical reducible permutation graph if,
and only if, G is a self-labeling reducible flow graph and

(i) the fixed element of G is 2n + 1 and G has a Type-1 representative
tree; or

(ii) the fixed element of G belongs to [n + 2, 2n] and G has a Type-2 rep-
resentative tree.

Proof: Let G be a canonical reducible permutation graph and T its
representative tree. By definition, G is a self-labeling reducible flow graph.
Let P = s1, . . . , s2n+1 be the root-free preorder traversal of T , hence a
canonical self-inverting permutation, also by definition. This means, among
other things, that P has a unique fixed element f , and that P ′ = s1, . . . , sn+1

is a bitonic subsequence of P . Since T is descending, it follows that the prefix
A of P ′ constituting its maximal ascending subsequence must comprise solely
vertices that are children of the root 2n+2, the rightmost of which certainly
being 2n+ 1.

First, let f = 2n+ 1. Since f constitutes a 1-cycle of P , f must occupy
the rightmost, (2n+ 1)th position in P , hence f is a leaf of T . Furthermore,
by Property 4 of canonical reducible permutation graphs, it follows that P ′

consists of elements n+1, n+2, . . . , 2n, 1, hence A = n+1, n+2, . . . , 2n, and
these vertices are therefore children of 2n+2 in T . Now, again by Property 4,
elements 1, . . . , n appear, in this order, to the right of A in P . Considering
that P is a preorder traversal and a representative tree satisfies the max-
heap property, we conclude that vertices 1, . . . , n can only be children of 2n,
hence T is a Type-1 tree, as required.

Next, suppose f < 2n+ 1. By Lemma 14, it follows that f ∈ [n+ 2, 2n].
We already know that the children of 2n+ 2 are the vertices of A. Let D be
the subset formed by the remaining vertices of P ′. Clearly, the vertices of D
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must appear in descending order. Since T satisfies the max-heap property
and P is a preorder traversal of T , it follows that the largest vertex of D
is a child of 2n + 1, and subsequently each vertex in D is the parent in T
of the vertex placed to its left along the sequence D. Again, because T
satisfies the max-heap property, f ∈ [2n + 2, 2n] must be the child of the
smallest vertex xq ∈ D ∪ {2n+ 1} satisfying xq > f . Let us again examine
the ascending subsequence A. We know that the first vertex of A is n + 1.
Suppose the leading k vertices of A are n + 1, n + 2, . . . , nk, for some k.
Because P is self-inverting, it follows that the vertices 1, 2, . . . , k must be
the children of the last (i.e., smallest) vertex of D, and k = f − n − 1 by
Property 4. It remains solely to describe how the remaining small vertices,
namely f −n, f −n+ 1, . . . , n, are placed in T . Since they appear after f in
P , it can only be that this subset comprises exactly the descendants N∗T (f)
of f in T . Each of the vertices y ∈ N∗T (f) constitute a 2-cycle with some
vertex x belonging to the bitonic subsequence P ′, hence the index of y in P
is exactly x, and all the conditions for a Type-2 tree have thus been verified.

Conversely, let G be a self-labeling reducible flow graph. First, suppose
that (i) applies and let T be the corresponding Type-1 representative tree.
Then the root-free preorder traversal P of T is

n+ 1, n+ 2, . . . , 2n, 1, 2, . . . , n, 2n+ 1.

Regarding P as a permutation of {1, . . . , 2n+1}, we observe that 2n+ 1 is
the only fixed vertex on it; for 1 ≤ i ≤ n, each element n+i of P has index i,
while i has index n+ i, and n+1, n+2, . . . , 2n, 1 form a bitonic subsequence
of P . Consequently, P is a canonical self-inverting permutation, and G is a
canonical reducible permutation graph.

Finally, suppose (ii) applies. Let T be the corresponding Type-2 rep-
resentative tree relative to some f ∈ [n + 2, 2n]. The root-free preorder
traversal P of T consists of

x1, . . . , x`, x`+1, . . . , xq, xq+1, . . . , xn, 1, 2, . . . , f − n− 1, f, P (N∗T (f)),

where x1 = n+1;x` = 2n+1; xi = n+i for 1 ≤ i ≤ f−n−1; x1, x2, . . . , xn, 1
is a bitonic subsequence of P ; and P (N∗T (f)) denotes the preorder traversal
of the vertices of N∗T (f), in which each yi ∈ N∗T (f) has index xyi − f + 1.
Observe that, for 1 ≤ i ≤ f − n − 1, (n + i, i) constitutes a 2-cycle in P .
Moreover, for f − n ≤ i ≤ n, vertex xi forms a 2-cycle with an element
yj ∈ N∗T (f). All conditions have been met, thus P is a canonical self-
inverting permutation and G is a canonical reducible permutation graph. 2

Corollary 23. Recognizing whether a graph G(V,E) is a canonical reducible
permutation graph can be achieved in O(|V |) time.
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Proof: Direct from Theorem 22 and from the definitions of self-labeling
reducible flow graphs, Type-1 and Type-2 representative trees, all of whose
conditions can be verified in linear time easily. 2

5 Coping with missing edges

The linear-time recognition of the class of canonical reducible permutation
graphs, wrapped up in the form of Corollary 4, allows for the construction
of a polynomial-time algorithm to recover watermarks which have been de-
prived of k edges, for any fixed integer k. The proposed algorithm is formally
robust [19], since it manages to repair a damaged watermark G′ whenever
such a thing is possible; otherwise, rather than producing an incorrect result,
it shows that G′ does not belong to the family of damaged watermarks that
can possibly be recovered. As a certificate for this latter case, it outputs the
set of watermarks that may become isomorphic to G′ through the removal
of exactly k of their edges, thus proving that the intended restore is not at
all possible.

Let G be a watermark and G′ the graph obtained from G when a certain
subset of k edges are removed. The idea is simple. The algorithm attempts
the addition to E(G′) of each and every k-subset of non-edges of G′, one
subset at a time. After each attempt, it checks whether a valid watermark
(i.e., a canonical reducible permutation graph) was produced. If, after trying
all subsets, only one graph was recognized as such, then the decoding was
successful. Otherwise, it displays a set containing all watermark candidates.

Since |V (G′)| = 2n+3 and |E(G′)| = 4n+3−k, the number of k-subsets
of non-edges of G′ is((2n+3

2

)
− (4n+ 3− k)

k

)
= O(n2k).

Thus, considering the effort of running the recognition algorithm for each one
of these watermark candidates, the algorithm runs in overall O(n2k)·O(n) =
O(n2k+1) time.

The aforementioned formulation considers that every non-edge of G′

could be an edge of the original watermark. However, owing to the par-
ticular structure of canonical reducible permutation graphs, relatively few
among those non-edges do really stand a chance of belonging to G. More
precisely, every vertex v of G has out-degree at most 2, hence v must be the
tail endpoint of a most 2−|N+

G′(v)| edges. The multiset M∗ of all candidates
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to being the tail of a missing edge has therefore

|M∗| =
∑

v∈V (G′)

(
2− |N+

G′(v)|
)

= 2 · |V (G′)| −
∑

v∈V (G′)

|N+
G′(v)|

= 2 · |V (G′)| − |E(G′)|
= 2 · (2n+ 3)− (4n+ 3− k) = k + 3

elements (not necessarily distinct), and therefore the k missing edge tails

may be chosen in
(|M∗|

k

)
= O(k3) different ways. For each k-subset of M∗,

the algorithm must choose the head corresponding to each tail, which can
be done in O(n) ways per edge, for an overall O(k3nk) number of k-subsets
of non-edges that shall be tentatively added to G′. With the O(n) running
time of the recognition algorithm for each such attempt, the complexity of
the whole decoding algorithm is an overall O(k3nk+1).

As a matter of fact, it is still possible to eliminate a whole O(k3) factor
from that asymptotical complexity, if the labels of the vertices are known.
To assume that the labels are known is reasonable in many situations, since
each vertex corresponds to a block in the CFG of the software, and, by
construction, the watermark graph possesses a Hamiltonian path 2n+2, 2n+
1, . . . , 0 that corresponds, in the CFG, to a chunk of subsequent blocks. If
that is the case, then we know the out-degree, in G, of all watermark vertices
(the tail and the head of the Hamiltonian path have out-degrees 1 and 0,
respectively; all other vertices have out-degree 2) and, consequently, the tails
of all missing edges. By running the linear-time recognition algorithm on
each possible choice of heads, the decoding algorithm has an overall O(nk+1)
time complexity.

6 A simpler decoding algorithm

We conclude with a new decoding algorithm for Chroni and Nikolopoulos’s
watermarks. Even though the running time of their seminal decoding algo-
rithm is also linear [6], our formulation (see Algorithm 1) is notably simpler.
Building on the proofs of some of the properties considered in Section 3.1,
the analysis that follows turns out to be rather easy.

Theorem 24. Algorithm 1 correctly retrieves the identifier encoded by a
canonical reducible permutation graph G in linear time.

Proof: Let G be a canonical reducible permutation graph on 2n+3 ver-
tices encoding the identifier ω. The set A, obtained in step 3 of Algorithm 1,
corresponds to the children of 2n+ 2 in the representative tree T of G, that
is, the vertices xi of G, for i = 1, . . . , `, which are the tail of some tree edge
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Algorithm 1 decode(G)

input: a watermark G with 2n+ 3 vertices and up to 2 missing edges
output: the identifier ω encoded by G

1. Let H be the unique Hamiltonian path in G.

2. Label the vertices of G so that H reads 2n+ 2, 2n+ 1, . . . , 0.

3. Let A = N−G (2n + 2), with |A| = `, and let x1, . . . , x`−1 ∈ A be the
ascending sequence of vertices of A \ {2n+ 1}.

4. Return ω =
∑`−1

i=1 22n−xi .

of G pointing to 2n+2. From Property 8 of canonical reducible permutation
graphs, such vertices xi which are not 2n + 1 are precisely those satisfying
xi = n+ zi, where zi is the index of a digit 1 in the binary representation B
of ω. The summation yielding ω can now be easily checked, since the relative
value of a digit 1 placed at position zi is 2n−zi = 2n−(xi−n) = 22n−xi .

The first step can be accomplished in straightforward fashion. Let H be
initially the single vertex v0 ∈ V (G) whose out-degree is zero. Update H by
concatenating to the left of H the unique vertex v1 which is an in-neighbor
of v0 in G. Now, while V (H) 6= V (G), proceed by concatenating to the left
of H the unique vertex vh, with h = |H|, which is an in-neighbor of vh−1
in G − {vh−2, vh−3, . . . , v0}. The whole process can be easily achieved in
linear O(|V (G)| + |E(G)|) = O(n) time by using adjacency lists for both
in-neighbors and out-neighbors of each vertex.

The ascending order, in the third step of the algorithm, can be achieved
in linear time by checking in an adjacency matrix whether v is an in-neighbor
of 2n+ 2, for each v ∈ {n+ 1, n+ 2, . . . , 2n}. Note that it is not necessary
to actually obtain the representative tree of G. Steps 2 and 4 are computed
in linear time trivially. 2

7 Proofs of the properties from Section 3

We had postponed the proofs of the properties stated in Section 3 to avoid
an overhead of technical pages too early in the paper. We now present the
full proofs.

Proof of Property 1 When read from right to left, the n rightmost
elements in Pb correspond to the n first elements in Z1, i.e the n first indexes,
in B∗, where a digit 1 is located. Since B∗ starts with a sequence of n
contiguous 1’s, the property ensues. 2
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Proof of Property 2 In B∗, digits with indexes 1, 2, . . . , n are all 1, by
construction. Since the n rightmost elements in Pb (i.e., elements indexed
n+ 2 ≤ i ≤ n∗ in Pb) correspond to the first n elements in Y , and therefore
to the first n indexes of 1’s in B∗, those will always be precisely the elements
of set S = {1, 2, . . . , n}. In other words, if s ∈ S, then s will have index
n∗ − s + 1 > n + 1 in Pb. By the time the elements of Pb are gathered
together in pairs with views to defining their placement in Ps, element s will
be paired with element q whose index is n∗ − (n∗ − s+ 1) + 1 = s. Because
s ≤ n, such q clearly does not belong to S, hence q > n. Now, because s
will be assigned index q in Ps, the element with index s in Ps will be its pair
q > n, concluding the proof. 2

Proof of Property 3 The bitonic permutation Pb is assembled in such a
way that its (n+ 1)th element f = bn+1 is either:

(i) the (n+ 1)th element of Z0, in case B∗ has at least n+ 1 digits 0; or

(ii) the (n+ 1)th element of Z1, otherwise.

By construction, the number of 0’s in B∗ is one unit greater than the
number of 1’s in B.

If (i) holds, then B corresponds to an identifier w that is the predecessor
of a power of 2, implying all n digits of B are 1’s. If that is the case, then
the desired property follows immediately, once the (n+ 1)th element of Z0

will be the index of the (n + 1)th — i.e., the last — digit 0 in B∗. Such
index is, by construction, n∗.

If (ii) holds, then f is the index of the (n + 1)th digit 1 in B∗. By
construction, the n first digits 1 in B∗ occupy positions with indexes 1, . . . , n,
and the (n+ 1)th digit 1 in B∗ corresponds to the first digit 1 in the one’s
complement of B. Since that digit has index f0 in the one’s complement of
B, and there are in B∗ exactly n digits to the left of the one’s complement
of B, the property follows. 2

Proof of Property 4 From the construction of Ps and Property 1, it
follows that the elements that occupy positions with indexes 1, 2, . . . , n in
Ps are the first n elements in Pb. It just occurs that the first n1 +1 numbers
in Pb are the elements of Z0, i.e., the indexes of 0’s in B∗. Now, the last
digit in B∗ — the one indexed n∗ — is always a 0. Besides that 0, the other
digits 0 in B∗ have indexes z = n+ d, where each d is the index of a digit 1
in B (the original binary representation of the identifier ω). While the first
digit in B is always 1, it is also true that:

(i) the f0 − 1 first digits in B constitute a seamless sequence of 1’s, in
case there is at least one 0 in B; or
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(ii) all n digits of B are 1’s, in which case ω is the predecessor of a power
of 2.

Whichever the case, Property 3 allows us to state that there is a sequence
of f − n− 1 digits 1 in B starting at the first digit of B. Such sequence will
show up, in B∗, starting at index n + 1, in such a way that the f − n − 1
first elements of Z0 will be n+ 1, n+ 2, . . . , n+ (f − n− 1) = f − 1. Those
elements, as we have seen, will be precisely the first numbers in Pb. Because
there are no more than n such elements, they will be paired against elements
1, 2, . . . , f − n− 1 ≤ n (located from the right end of Pb leftwards) in order
to determine their placement in Ps, and the property follows. 2

Proof of Property 5 If the identifier ω is not the predecessor of a power
of 2, then its binary representation B, whose first digit is always a 1, contains
some digit 0. In light of this, Property 3 implies f ≥ n + 2 for all integers
ω, and the first equality now follows from Property 4. The second equality
is granted by the self-invertibility of Ps, whereby sj = u ⇐⇒ su = j. 2

Proof of Property 6 First, note that f 6= n∗ corresponds to the case
where the identifier ω is not the predecessor of a power of 2, i.e., n1 < n.
Because the sequence Z0 has exactly n1+1 elements, the last of which being
the index n∗ of the rightmost digit in B∗, element n∗ will always be assigned
index n1 + 1 in Pb. As we have seen in the proof of Property 4, for i ≤ n,
the ith element in Pb will also be the ith element in Ps, for it will be paired
against element i, indexed n∗− i+1 in Pb (due to the starting sequence of n
digits 1 in B∗). That being said, element n∗, indexed n1 + 1 ≤ n in Pb, will
have index n1 + 1 in Ps as well. If f = n∗, then the definition of f verifies
the property trivially. 2

Proof of Property 7 We employ again the fact, noted for the first time
in the proof of Property 4, that the subsequence consisting of the first n
elements in Ps and the subsequence consisting of the first n elements in
Pb are one and the same. Since Pb is bitonic, whatever subsequence of
Pb is bitonic too, particularly the one containing its first n elements. By
Property 5, the central element sn+1 of Ps is always equal to 1, therefore
the bitonic property of the subsequence consisting of the leftmost elements
of Ps will not be broken after its length has grown from n to n+ 1, that is,
after element sn+1 = 1 has been appended to it. 2
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Proof of Property 8 The first n1+1 elements of the bitonic permutation
Pb are the elements of Z0, corresponding to the indexes of 0’s in the extended
binary B∗ (which consists, we recall, of n digits 1, followed by the one’s
complement of the binary representation B of the identifier ω encoded by
G, followed by a single digit 0). Those elements constitute the ascending
prefix A = n+ z1, n+ z2, . . . , n+ zn1 , 2n+ 1, where, for i ∈ {1, . . . , n1}, zi is
the index of a digit 1 in B. From the proof of Property 4, we know that, for
i ≤ n, the ith element in Pb will also be the ith element in the self-inverting
permutation Ps. Since n1 ≤ n, we have that the n1 first elements of Ps are
precisely the n1 first elements of A, hence the tree edge tailed at each of
those elements must point, by construction, to 2n + 2. It remains to show
that no element u /∈ A∪{2n+1} is the tail of a tree edge pointing to 2n+2.
But this comes easily from the fact that, by Property 6, the (n1 + 1)th
element in Ps is 2n + 1. Since all vertices u with indexes i > n1 + 1 in Ps

are certainly smaller than 2n + 1, they can only be the tail of tree edges
pointing to vertices q(u) ≤ 2n+ 1, and the proof is complete. 2

Proof of Property 9 Both items are trivially verified, since, by construc-
tion, every tree edge (u, k) ∈ G is such that either k > u is the element that
is closest to u and to the left of u in Ps, or k = 2n+ 2. 2

8 Final considerations

We characterized the class of canonical reducible permutation graphs devised
by Chroni and Nikolopoulos in [4]. Such graphs allow for the encoding of
binary identifiers and can be embedded into control-flow graphs of software
through the insertion of dummy code.

Our charaterization led to a simpler linear-time decoding algorithm and
a polynomial-time algorithm to retrieve the encoded word from a damaged
graph (with a constant number k of missing edges). Note that an attacker
will probably not know where the watermark is located (otherwise the wa-
termark itself could be removed altogether). The more edges that are arbi-
trarily chosen to be removed, the higher the probability that an edge that
does not belong to the watermark is removed and the program itself gets
damaged. It is therefore reasonable to regard k as a small constant for all
practical purposes whenever it is possible to do so deterministically.

The proposed characterization actually gives rise to a linear-time algo-
rithm which can always detect an attack and restore the original graph when
k ≤ 2 edges are missing. It can also detect (without restoring the graph)
that k edge removals and/or insertions were done, for 3 ≤ k ≤ 5. Such
results are presented—and shown to be the best possible—in [2], where fur-
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ther details about the resilience of canonical reducible permutation graphs
against this sort of attack are given.

An interesting open question is whether the problem is fixed-parameter
tractable with respect to k. Another question is whether it is possible to
cope with the graph editing problem in its full generality.
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