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Abstract

Deciding whether an arbitrary graph admits a VLSI layout with unit-length edges
is NP-complete [1], even when restricted to binary trees [7]. However, for certain
graphs, the problem is polynomial or even trivial. A natural step, outstanding thus
far, was to provide a broader classification of graphs that make for polynomial or
NP-complete instances. We provide such a classification based on the set of vertex
degrees in the input graphs, yielding a comprehensive dichotomy on the complexity
of the problem, with and without the restriction to trees.
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Fig. 1. (a) The grid G3,5. (b) Unit-length embedding for a {1, 2, 4}-tree.

A grid GM×N has vertex set V (GM×N) = {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N},
and edge set E(GM×N) = {(i, j)(k, l) : |i − k| + |j − l| = 1, (i, j), (k, l) ∈
V (GM×N)} (see Figure 1a). A grid embedding is a mapping from a graph’s
vertices to a subset of the points of a grid, along with an incidence-preserving
assignment of edges to non-crossing paths in the grid. Grid embeddings are
widely studied in VLSI design and parallel architecture simulations [9,8]. A
partial grid is any subgraph (not necessarily induced) of a grid, or, equiva-
lently, a graph which admits an embedding with only unit-length edges.

Deciding whether a graph admits a unit-length embedding is NP-com-
plete [1], even for binary trees [7]. Indeed, the so-called logic engine paradigm
for proving the NP-hardness of problems in Graph Drawing is described in [4],
where the seminal references [1,7] are discussed, along with further applica-
tions [5,6]. On the other hand, in the context of Graph Theory, the recognition
of partial grids is often stated as an open problem [2,3].

We consider the complexity dichotomy into polynomial and NP-complete
for degree-constrained VLSI layouts with unit-length edges. Let D be a set
of non-negative integers. We say a graph is a D-graph if the degrees of all its
vertices are elements of D, e.g. a path is a {1,2}-graph, a cycle is a {2}-graph,
a complete graph on n vertices is a {n− 1}-graph etc. Notice that a D-graph
G is also a D′-graph, for D′ ⊃ D, since it is not required that all elements of
D actually appear as the degree of some vertex in G (see Figure 1b).

This paper covers the Unit-Length VLSI problem (alternatively,
Partial-Grid Recognition) when the input is restricted to D-graphs, for
every possible set D the degrees of the input vertices may belong to. Since the
only connected graph with vertices of degree 0 is a singleton, and since graphs
containing vertices of degree 5 or greater cannot possibly be embedded in a
2-dimensional, degree-4 grid, we are interested in the subsets of {1,2,3,4}.

Throughout the text, the term immersibility refers to a graph’s ability, or
the lack thereof, to be embedded in a grid with only unit-length edges. All
graphs considered in this paper are connected.
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Fig. 2. Unit-length embedding for Bhatt and Cosmadakis’s extended skeleton Sϕ

associated to the 3CNF formula ϕ = (x2 ∨ x3 ∨ x4)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x3 ∨ x4).

1 Previous NP-completeness results

In [1], Bhatt and Cosmadakis proved that deciding the existence of unit-
length embeddings for arbitrary trees is NP-complete. Their proof was based
on the reduction of the well-known NP-complete problem Not-All-Equal
3CNFSAT (not-all-equal conjunctive-normal-form satisfiability with 3 literals
per clause) to the problem of deciding the existence of a unit-length embedding
for a special tree they define, called the extended skeleton (see Figure 2). This
problem is referred to as the Bhatt-Cosmadakis problem.

The seminal proof of Bhatt and Cosmadakis suffices to show that Unit-
Length VLSI is NP-complete for {1,2,4}-trees, since the extended skeleton
is itself a {1,2,4}-tree. It is also NP-complete for {1,2,3,4}-trees, since if the
problem is NP-complete for D-trees, given a set D, then it is NP-complete for
D-graphs (allowing cycles) and for D′-graphs, D′ ⊃ D, as well.

The NP-completeness for {1,2,3}-trees was demonstrated by Gregori [7],
who conceived an ingenious {1,2,3}-tree, called the U-tree, as a suitable re-
placement structure.

2 New NP-completeness results

We start with a new definition. Let G be a graph. Say vertex v ∈ G is adjacent
to vertices s and t. If, in all unit-length embeddings of G, edges sv and vt can
only appear as two consecutive segments of the same grid line (or column),
we say we have a pair of necessarily collinear edges. Analogously, if sv and
vt can only be embedded with a 90o angle between them, we say they are
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Fig. 3. (a) The {2,3} gadget (double ladder). (b) Double-ladder substitution.

necessarily orthogonal. If there is at least one unit-length embedding for G in
which sv and vt appear one way, and at least one unit-length embedding for G
in which they appear the other way, we say they constitute a pair of free-angle
edges. In the graph of Figure 2, it is easy to see that edges ax11 and cx11 are
necessarily collinear, whereas edges ax11 and bx11 are necessarily orthogonal,
and all pairs of edges incident to a vertex painted black are free-angle.

Now we introduce a special {2,3}-graph called the double ladder. Fig-
ure 3a presents its only existing unit-length embedding. Vertices x, y, z, w are
regarded as interconnectors. Since the double ladder admits only one circu-
lar ordering of the interconnectors in all its feasible embeddings, the pairs of
opposed interconnectors (namely x, z and w, y) and of consecutive intercon-
nectors (all other pairs) are fixed.

Let G be a graph. We define the double-ladder substitution as the linear-
time operation that obtains the graph D(G) such that: (i) there is a bijection
between each vertex v in G and a double ladder d(v) in D(G); and (ii) there is
a bijection between each edge uv in G and an edge linking an interconnector
of d(u) to an interconnector of d(v) in D(G), in which case such interconnec-
tors have become active. Figure 3b illustrates the result of a double-ladder
substitution applied to the subgraph highlighted in Figure 2.

To preserve the immersibility of the original graph, it is mandatory that
the choice of active interconnectors match the relative positions of all pairs of
edges that are not free-angle in the original graph.



Lemma 2.1 Double-ladder substitution—with appropriately chosen intercon-
nectors—preserves the immersibility of extended skeletons.

Proof. Let Sϕ be an extended skeleton. We show that Sϕ is a partial grid
if and only if so is D(Sϕ). Suppose D(Sϕ) is a partial grid, and let Γ′ be
a unit-length embedding of D(Sϕ). No matter how each double ladder is
embedded, the distance between the centers of two adjacent double ladders is
always 5. Since Sϕ is connected, the distance between the centers of any two
double ladders in Γ′ is a multiple of 5 in both directions (vertical/horizontal).
By substituting a single vertex v (placed at its center) for each double ladder
d(v), and then depriving Γ′ of all lines and columns other than those containing
the centers, we get a new grid that is 5 times smaller (on each dimension).
Now, by adding to the new grid an edge uv for every pair of adjacent double
ladders d(u), d(v), we obtain a unit-length embedding Γ of Sϕ.

For the converse, suppose Sϕ can be embedded in an M × N grid using
unit-length edges, and let Γ be such an embedding. Clearly, there will always
be a unit-length embedding Γ′ for D(Sϕ) in a 5M×5N grid, where each vertex
v at coordinate (i, j) in Γ corresponds to a double ladder d(v) spreading over a
5×5 square, in Γ′, whose center has coordinates (5i, 5j). As for the connections
between adjacent double ladders, we prove they can always be achieved by an
appropriate choice of active interconnectors.

The point is, an extended skeleton is a rigid enough structure, so that all
pairs of adjacent edges are either necessarily collinear or necessarily orthog-
onal. Thus, in order to make all the connections between adjacent double
ladders in Γ′ possible, it suffices that, when connecting d(v) to d(s) and d(t)
(for sv, vt ∈ Sϕ) in a double-ladder substitution on Sϕ, we employ a pair of
opposed interconnectors of d(v) if sv, vt are necessarily collinear, a pair of con-
secutive interconnectors if they are necessarily orthogonal, and an arbitrary
pair of interconnectors of d(v) if they are free-angle. 2

Theorem 2.2 Unit-Length VLSI is NP-complete for {2, 3}-graphs.
Proof. Clearly, Unit-Length VLSI belongs to NP, regardless of the input.
Now, since Bhatt-Cosmadakis is NP-complete (see Section 1) and, by Lem-
ma 2.1, any extended skeleton can be polynomially transformed—via double-
ladder substitution—into a {2,3}-graph with the same immersibility, Unit-
Length VLSI is NP-complete when restricted to {2,3}-graphs as well. As
{2, 3, 4} ⊃ {2, 3}, the NP-completeness for {2,3,4}-graphs follows. 2

We also prove the problem is NP-complete for {1, 3}- and {2, 4}-graphs.
The proof, whose details were left for the full version of this paper due to space
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Fig. 4. (a) The {2,4} gadget. (b) Rotation of 45◦. (c) Square substitution.
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Fig. 5. The {1,3} gadget.

constraints, is based on analogous immersibility-preserving transformations.
For {2, 4}-graphs, the gadget is a simple C4 (a square), with the peculiar-
ity that it replaces not only the vertices but also the edges of the extended
skeleton being transformed, in what we call a square substitution. Existing
layouts of square-substituted graphs look as though the corresponding layouts
of the original graphs had been rotated 45◦, as illustrated in Figure 4a-c. The
gadget for {1, 3}-graphs is actually a special {1, 3}-tree (see Figure 5) which
must be used in combination with Gregori’s U-tree, since it has only three
interconnectors. The original extended skeleton is therefore initially trans-
formed into a {1, 2, 3}-tree by having its vertices replaced with U-trees, and
only then transformed into a {1, 3}-tree by using an immersibility-preserving
substitution which employs the new gadget.

NP-completeness results for {1, 3, 4}-trees and {2, 3, 4}-graphs follow di-
rectly from the the superset property.

3 Polynomially decidable cases

For {1}-, {2}- and {1, 2}-graphs the problem is trivial. A path on n vertices
can always be laid out on a straight line of a 1 × n grid, and any even cycle



on 2k vertices can be embedded on a 2× k grid. Odd cycles are not bipartite
and therefore cannot be partial grids.

The problem is also trivial for {3}-, {4}- and {3,4}-graphs, for these graphs
can never be partial grids. Suppose there is a unit-length embedding Γ for a
graph with no vertices of degree 1 or 2. Let v be the topmost vertex in the
leftmost column of Γ. Since all other vertices are placed below or to the right
of v, v can have at most 2 neighbors, a contradiction.

An interesting polynomial case is that of {1, 4}-graphs, which completes
our dichotomy.

Theorem 3.1 A {1,4}-graph is a partial grid if and only if its degree-4 ver-
tices induce a grid graph.

Proof. Let G be a {1,4}-graph, and G′ the subgraph of G induced by all
its vertices of degree 4. If G′ is a grid, then there is always a unit-length
embedding for G, in which the degree-4 vertices occupy all points of an M×N
rectangle, surrounded by the 2(M+N) degree-1 vertices, which are necessarily
adjacent to the vertices in the boundaries of such rectangle. For the converse,
whose details are omitted here, the idea is that, if G′ is a connected partial
grid that is not a grid, any embedding of G′ must present a unit-area square
σ containing at least 2 but no more than 3 edges of G′. This, along with the
fact that the vertices of G′ have degree 4 in G, leads to a contradiction. 2

4 Conclusion and open problems

Please refer to Figure 6 for the summarized complexity dichotomy. Existing
results are duly referenced.

A question of theoretical interest concerns the existence of replacement
D-graphs that always preserve immersibility. The gadgets introduced herein,
albeit sufficient for the intended proofs, do not guarantee that the immersibil-
ity of the original graph is preserved when the relative positions of its edges
are not known beforehand. Another question worth considering is how the
complexities get affected by allowing edges with length up to k > 1.
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