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ABSTRACT

Numerous approximation algorithms for problems on unit disk graphs have been pro-

posed in the literature, exhibiting a sharp trade-off between running times and approx-
imation ratios. We introduce a variation of the known shifting strategy that allows us

to obtain linear-time constant-factor approximation algorithms for such problems. To
illustrate the applicability of the proposed variation, we obtain results for three well-
known optimization problems. Among such results, the proposed method yields linear-

time (4 + ε)-approximations for the maximum-weight independent set and the minimum
dominating set of unit disk graphs, thus bringing significant performance improvements

when compared to previous algorithms that achieve the same approximation ratios. Fi-

nally, we use axis-aligned rectangles to illustrate that the same method may be used
to derive linear-time approximations for problems on other geometric intersection graph
classes.

Keywords: Approximation algorithm; unit disk graph; geometric intersection graph; core-
set.
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1. Introduction

Linear- and near-linear-time approximation algorithms constitute an active topic of

research, even for problems that can be solved exactly in polynomial time, such as

maximum flow and maximum matching.1–5 This paper employs a variation of the

shifting strategy introduced by Hochbaum and Maass three decades ago.6 While the

shifting strategy usually leads to high running times, our variation, which we call

the shifting coresets method, allows us to obtain linear-time constant-approximation

algorithms for problems on unit disk graphs. Three algorithms for well-studied

optimization problems on unit disk graphs are presented to illustrate the method. A

fourth algorithm, for maximum-weight independent sets of axis-aligned rectangles

in the plane, is also given, showing that the method applies to other geometric

intersection graph classes as well.

Geometric intersection graphs are graphs whose n vertices correspond to geomet-

ric objects and whose m edges correspond to pairs of intersecting objects. Several

classes of geometric intersection graphs are defined by restricting the shape of the

objects: disks, unit disks, squares, rectangles, etc. Approximation algorithms for

such classes are either graph-based, when they receive as input solely the adjacency

representation of the graph, or geometric, when the input consists of a geometric

description of the objects. Note that when the goal is to design O(n)-time algo-

rithms, the geometric representation is required, since the number m of edges in a

geometric intersection graph can be as high as Θ(n2).

Polynomial-time approximation schemes (PTASs) have been developed for sev-

eral optimization problems on multiple classes of intersection graphs. Among such

problems, we focus on the following three in the present paper:

• Maximum-weight independent set (WIS): Given a graph with weighted ver-

tices, find the maximum-weight subset of mutually non-adjacent vertices.

• Minimum dominating set (DS): Given a graph, find the minimum-

cardinality vertex subset D such that every vertex not in D is adjacent

to some vertex in D.

• Minimum vertex cover (VC): Given a graph, find the minimum-cardinality

vertex subset C such that every edge is incident on some vertex in C.

The shifting strategy has given rise to geometric PTASs for several problems on

geometric intersection graphs.6–9 A set of n geometric objects has constant diameter

if the Euclidean distance between any two points contained inside the objects is

upper-bounded by a constant. Essentially, the shifting strategy reduces the original

problem to a set of subproblems of constant diameter. Such a reduction takes O(n)

time and yields a (1+ε)-approximation to the original problem once the solutions to

the subproblems are known. Each subproblem is then solved exactly by exploiting

the fact that it has constant diameter. For example, it is often possible to show by

packing arguments that an input instance whose diameter is d admits a solution with

c = O(d2) vertices, so that exhaustive enumeration can find the optimal solution
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in roughly O(nc) time. As a consequence, the running times of such PTASs are

high-degree polynomials. Other PTASs that are not based on the shifting strategy

also exist, but their complexities are usually even higher.10

Among countless classes of geometric intersection graphs, unit disk graphs are

arguably the most studied one, owing largely to their applicability in wireless net-

works.10,11 A unit disk graph (UDG) is the intersection graph of unit disks in the

plane, and its vertices are usually represented by the coordinates of the disk centers.

With respect to this representation, two vertices are adjacent if the corresponding

points (the disk centers) are within Euclidean distance at most 2 from one an-

other. Next, we review the state of the art of the three aforementioned optimization

problems on the class of UDGs.

The minimum dominating set problem (DS) on UDGs admits some PTASs,

the fastest of which is geometric and provides a (1 + ε)-approximation in nO(1/ε2)

time.9,10 For the sake of comparison with the linear-time (4 + ε)-approximation

algorithm introduced in Section 4, such a PTAS produces a 4-approximation in

roughly O(n10) time. The high running times of the existing PTASs have therefore

motivated the study of faster constant-factor approximation algorithms. Examples

of graph-based algorithms include a 44/9-approximation that runs in O(n + m)

time and a 43/9-approximation that runs in O(n2m) time.12 Among the geometric

algorithms, we cite the original 5-approximation, which can be implemented in

O(n) time if the floor function and constant-time hashing are available;11 a 44/9-

approximation that uses local improvements and runs in O(n log n) time;12 a 4-

approximation that uses grids and runs in O(n8 log n) time;13 and an improved

4-approximation that uses hexagonal grids and runs in O(n6 log n) time.14

The maximum-weight independent set problem (WIS) also admits PTASs for

UDGs, the fastest of which is geometric and attains a (1 + ε)-approximation in

O(n4d2/ε
√
3e) time.9,10,15 Using a slab decomposition and the longest path in a

DAG, Matsui15 showed how to obtain an approximation ratio of (1+(2/
√

3)+ε) <

2.16 in O(n2) time.a Alternatively, a geometric 5-approximation can be obtained in

O(n log n) time by a greedy approach that considers the vertices in decreasing order

of weights, or in O(n + m) time in the graph-based version.11 In comparison, the

algorithm presented in Section 3 obtains a (4+ε)-approximation in linear time. Note

that, for the unweighted version, a geometric greedy approach that considers the

vertices from left to right can be implemented to give a 3-approximation in O(n)

time with floor function and constant-time hashing.11 The high running time of

the existing PTASs also motivated the discovery of an O(n3)-time 2-approximation

algorithm for the unweighted version.17

The minimum vertex cover problem (VC) for UDGs is a rare example for which

a geometric linear-time approximation scheme is known.18 Previously, two high-

complexity PTASs (one geometric and one graph-based) had been proposed.9,19

aAfter this article, the running time has been reduced to O(n log3 n) using advanced data struc-
tures.16
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previous / new results WIS DS

previous ratio in O(npolylog(n)) time 5 Ref. 11 4.889 Ref. 12
our approximation ratio in O(n) time 4 + ε Sec. 3 4 + ε Sec. 4

previous time for a (4 + ε)-approximation O(n2) Ref. 15 O(n6 logn) Ref. 14

Table 1. Comparison of new and previous approximation algorithms for UDGs.

Another important class of geometric intersection graphs is defined by axis-

aligned rectangles in the plane. Maximum-weight independent sets in such graphs

are widely studied due to their application in data mining, map labeling, and VLSI

design.7,20–23 However, the lack of polynomial constant-factor approximation algo-

rithms has motivated the investigation of more restricted subclasses, for example

the intersection graphs of squares and of unit-height rectangles.7,22 Also, PTASs

for the WIS exist for the class of fat convex objects, which generalizes unit disk

graphs and several intersection graphs of rectangles.21,24 The fastest PTAS for the

WIS on fat convex objects takes nO(1/ε) time and space, or alternatively nO(1/ε2)

time with O(n) space.21

Our results. We present a method to solve the constant-diameter subproblems

that appear when the shifting strategy is used. We call it the shifting coresets

method (Section 2). By incorporating this method into the shifting strategy idea,

we obtain linear-time approximation algorithms for problems on unit disk graphs

and other geometric intersection graphs. The method is based on approximating

the input set of geometric objects, which can be arbitrarily dense, by a sparse set

of objects, that is, a set of objects such that any square of constant size contains at

most a constant number of objects.

To obtain efficient algorithms through the application of our method, one needs

to investigate the fundamental question of how well a sparse set—generated using

only local information—can approximate a denser set for each considered problem.

Thus, although the algorithms in this text share the same basic strategy, their

analyses differ significantly. For example, the WIS analyses apply advanced graph-

coloring theorems, whereas the DS analysis applies geometric packing arguments.

By using the shifting coresets method, we obtain linear-time (4 + ε)-approxima-

tion algorithms on UDGs for the WIS (which is tackled first, in Section 3, owing to

its greater simplicity) and for the DS (Section 4). The proposed algorithms provide

significant improvements when compared to existing linear- and near-linear-time

algorithms for these problems (see Table 1). The text also includes (Section 5) an

alternative linear-time (1+ε)-approximation obtained for the VC. We reiterate that

in that section we have independently derived a previous result due to Marx, for

the sake of illustrating an indirect application of our method.18 Finally, our method
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is applied to obtain a linear-time (6 + ε)-approximation algorithm for the WIS on

the class of intersection graphs of axis-aligned rectangles with side lengths in [1, λ],

for an arbitrary constant λ ≥ 1.

In Section 7, some open problems and lower bounds to the approximation ratios

of the presented algorithms are discussed.

2. The Shifting Coresets Method

The shifting strategy is the core of most of the existing geometric PTASs for prob-

lems on geometric intersection graphs.6 Generally, the shifting strategy reduces the

original problem with n objects to a set of subproblems whose inputs have constant

diameter and the sum of the input sizes is O(n). Such a reduction is based on par-

titioning the objects according to a number of iteratively shifted grids and takes

O(n) time (by using the floor function and constant-time hashing). Exploiting the

inputs’ constant diameter, each subproblem is solved exactly in polynomial time.

The solutions to the subproblems are then combined appropriately (normally in

O(n) time) to yield feasible solutions to the original problem, the best of which

is returned. The high complexities of these geometric PTASs are due to the exact

algorithms that are employed to solve each subproblem.

The shifting coresets method we introduce is based on the shifting strategy.

However, it presents a crucial new aspect. Rather than obtaining exact, costly so-

lutions for the subproblems, it solves each subproblem approximately. To do that,

it employs the coresets paradigm, which consists in considering only a constant-size

subset of the input.25 Let diam(P ) denote the maximum distance between two

points contained inside objects of a set of objects P . For a problem whose input is

a set P of n objects and a parameter ε > 0, the method can be briefly described as

follows.

(1) Apply the shifting strategy to construct a set of r subproblems with inputs

P1, . . . , Pr such that
∑r
i=1 |Pi| = O(n) and for all i, diam(Pi) is a constant that

depends on ε.

(2) For each subproblem instance Pi, obtain a coreset Qi ⊆ Pi with |Qi| = O(1),

such that the optimal solution for instance Qi is an α-approximation to the

optimal solution for instance Pi.

(3) Solve the problem exactly for each Qi.

(4) Combine the solutions into an (α+ ε)-approximation for the original problem.

Coresets for different problems must be devised on a case-by-case basis. For

the WIS on UDGs, we create a grid with cells of diameter 0.29 and consider only

one disk center of maximum weight inside each cell. For the DS on UDGs, we

create a grid with cells of diameter 0.24 and consider only the (at most four) disk

centers, inside each cell, with minimum or maximum coordinate in either dimension

(breaking ties arbitrarily). We solve the VC on UDGs by breaking each subproblem

into two cases. In the first one, the number of input disks is already bounded by a
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constant, therefore already a coreset. In the second one, we use the same coreset as

in the WIS. Finally, we solve the WIS on a class of rectangle intersection graphs

by representing each rectangle as a 4-dimensional point and using a 4-dimensional

grid with cells of side 0.1. Our coreset is then formed by the rectangle of maximum

weight inside each 4-dimensional cell.

Assuming a real-RAM model of computation with floor function and constant-

time hashing, it is possible to partition the input points into grid cells efficiently,

yielding an overall O(n) running time for the algorithms.26 Without these oper-

ations, the running time becomes O(n log n). We also assume that ε is constant.

Otherwise, the running time becomes 2O(1/ε2)n for the WIS and the DS on UDGs,

since their corresponding coresets contain O(1/ε2) points.b For the VC, the running

time becomes 2O(1/ε3)n. As for the WIS on axis-aligned rectangles, if one regards ε

and λ (the maximum allowed side length) as asymptotic variables, then the running

time becomes 2O(λ2/ε2)n.

Definitions. A grid is said to be rooted at a point (x, y) if there is a grid cell with

corner at (x, y). Given a grid cell C and a real parameter d > 0, the square region

C−d ⊂ C, called the d-contraction of C, is formed by removing from C the points

within L∞ distance at most d from the boundary of C. Analogously, the square

region C+
d ⊃ C, called the d-expansion of C, is formed by C and all points within

L∞ distance at most d from C. Finally, we denote the collection of all d-expansions

of cells of a grid rooted at a point p by C+d (p).

3. WIS on UDGs

In this section, we show how to apply the shifting coresets method to obtain a

linear-time (4 + ε)-approximation to the WIS on unit disk graphs. We start by

presenting a 4-approximation for point sets of constant diameter, and then we use

the shifting strategy to obtain the desired (4 + ε)-approximation.

Given a point p and a set S of points, let w(p) denote the weight of p, and

let w(S) =
∑
p∈S w(p). Two or more points are considered independent if their

minimum distance is strictly greater than 2.

Theorem 1. Given a set P of n points with real weights as input, with diam(P ) =

O(1), the WIS for the corresponding UDG can be 4-approximated in O(n) time on

the real-RAM.

Proof. Our algorithm proceeds as follows. First, find the points of P with mini-

mum or maximum coordinates in either dimension. That defines a bounding box of

bThe dependency on ε may be conceivably improved to 2O(1/ε)—for instance, by replacing brute-

force search with a 2O(
√
n)-time exact algorithm via separators. Such a dependency is not too

important, though, since the approximation factor does not approach 1. We have therefore opted
for the simplest approach.
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constant size for P . Within this bounding box, create a grid with cells of diameter

γ = 0.29 and side γ/
√

2 (any value γ < (2−
√

2)/2 suffices). Note that the number

of grid cells is constant, and therefore the points of P can be partitioned among the

grid cells in O(n) time (even without using the floor function or hashing). Then,

build the subset Q ⊆ P as follows. For each non-empty grid cell C, add to Q a point

of maximum weight in P ∩ C. Afterwards, determine the maximum-weight inde-

pendent set I∗ of Q. Since |Q| = O(1), this can be done in constant time. Return

the solution I∗.

Next, we show that I∗ is indeed a 4-approximation. We argue that, given an

independent set I ⊆ P , there is an independent set I ′ ⊆ Q with 4 w(I ′) ≥ w(I).

Given a point p ∈ P , let q(p) denote the point from Q that is contained in the same

grid cell as p. Consider the set S = {q(p) : p ∈ I}. Note that w(q(p)) ≥ w(p) and

w(S) ≥ w(I). The set S may not be independent, but since I is independent, the

minimum distance in S is at least 2− 2γ = 1.42 >
√

2. We claim that the unit disk

graph formed by S is a planar graph. To prove the claim, we show that a planar

drawing can be obtained by connecting the points of S within distance at most 2 by

straight line segments. Given a pair of points p1, p2 with distance ‖p1p2‖ ≤ 2, the

Pythagorean Theorem shows that a unit disk centered within distance greater than√
2 from both p1 and p2 cannot intersect the segment p1p2. This implies no two edges

in the drawing can cross. By the Four-Color Theorem,27 S admits a partition into

four independent sets S1, . . . , S4. The set I ′ of maximum weight among S1, . . . , S4

must have weight at least w(I)/4.c

Since I∗ is the maximum-weight independent set of Q, it follows that I∗ is a

4-approximation for the WIS.

The following theorem uses the shifting strategy to obtain a (4 + ε)-approxima-

tion for point sets of arbitrary diameter. The proof borrows ideas from Hunt III

et al.9 We present them in a different manner, though, including details about an

efficient implementation of the strategy.

Theorem 2. Given a set P of n points in the plane as input, the WIS for the

corresponding UDG can be (4 + ε)-approximated in O(n) time on the real-RAM

with constant-time hashing and the floor function. Without these operations, it can

be done in O(n log n) time.

Proof. Let k be the smallest integer such that(
k − 2

k

)2

≥ 4

4 + ε
. (1)

The algorithm proceeds as follows. For i, j from 0 to k − 1, create a grid with

cells of side 2k rooted at (2i, 2j). For each cell C in the grid, run the WIS 4-approx-

imation algorithm from Theorem 1 with point set P ∩ C−2 (the points in P that

cNote that the Four-Color Theorem is only used in the argument. No coloring is ever computed
by the algorithm.
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4

C

2k C−
2 2k − 4

Fig. 1. Grid rooted at (2, 4) with cells of side 2k = 10 and the 2-contraction of a cell.

belong to a 2-contraction of C, see Fig.1), obtaining a solution Ii,j(C). Then, the

independent set Ii,j is constructed as the union of the independent sets Ii,j(C) for

all grid cells C. Return the maximum-weight set Ii,j that is found, call it I∗.

To implement the algorithm efficiently, create a subgrid of subcells of side 2,

assigning each point to the subcell that contains it. In order to partition the n

points into subcells efficiently, one should use the floor function and constant-time

hashing, taking O(n) time. If these operations are not available, it is possible to de-

termine the connected components of the graph (using the Delaunay triangulation,

for example) and to partition the points of each component into subcells (through

sorting by x-coordinate, separating into columns, and sorting inside each column

by y-coordinate). The non-empty subcells are stored in a balanced binary search

tree. This process takes O(n log n) time due to sorting, Delaunay triangulation, and

binary search tree operations. Given the partitioning of the point set into subcells,

each input to the WIS algorithm can be constructed as the union of a constant

number of subcells. Finally, the total size of the constant-diameter WIS instances

is O(n), since each point from the original point sets appears in a constant number

of such instances, namely (k − 2)2.

To prove that the returned solution I∗ is indeed a (4+ε)-approximation, we use

a probabilistic argument. Let i, j be picked uniformly at random from 0, . . . , k − 1

and let OPT denote the optimal solution. For every cell C, we have

w(Ii,j(C)) ≥ 1

4
w(OPT ∩ C−2 ).

Consequently, by summing over all grid cells,

w(Ii,j) =
∑
C

w(Ii,j(C)) ≥ 1

4

∑
C

w(OPT ∩ C−2 ) =
1

4

∑
p∈OPT

ρ(p) w(p),

where ρ(p) denotes the probability that a given point p is contained in some con-

tracted cell. Because such probability is the same for all points, E[w(Ii,j)] is bounded

by

E[w(Ii,j)] ≥
1

4
ρ(p)

∑
p∈OPT

w(p) =
1

4
ρ(p) w(OPT ).
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Note that, for all p ∈ P , ρ(p) corresponds to the ratio between the areas of C−2 and

C, namely

ρ(p) =
area(C−2 )

area(C)
=

(
k − 2

k

)2

.

Therefore, by using inequality (1), we obtain

E[w(Ii,j)] ≥
1

4

(
k − 2

k

)2

w(OPT ) ≥ 1

4 + ε
w(OPT ).

Since I∗ has maximum weight among the independent sets Ii,j , it follows that

w(I∗) is at least as large as their average weight. Therefore, I∗ satisfies

w(I∗) ≥ E[w(Ii,j)] ≥
1

4 + ε
w(OPT ),

closing the proof.

4. DS for UDGs

In this section, we show how to apply the shifting coresets method to obtain a

linear-time (4 + ε)-approximation to the DS (in fact, a generalization of it) on unit

disk graphs. We start by presenting a 4-approximation for point sets of constant

diameter, and then we use the shifting strategy to obtain the desired (4 + ε)-ap-

proximation. A point p dominates a point q if ‖pq‖ ≤ 2. Given two sets of points D

and P ′, the set D is a P ′-dominating set if every point in P ′ is dominated by some

point in D.

We now define a more general version of the DS, the minimum partial dominating

set problem (PDS). Such a generalization is necessary to properly apply the shifting

strategy. In the PDS, given a set P of n points and also a subset P ′ ⊆ P , the goal

is to find the smallest P ′-dominating subset D ⊆ P .

In order to analyze our algorithm, we prove a geometric lemma that shows that

the difference between a unit circle and two unit disks that are sufficiently close

to it and form a sufficiently big angle consists of one or two “small” arcs. Given a

point p, let ©p denote the unit disk centered at p, and ∂©p denote its boundary

circle.

Lemma 3. Given δ > 0 and three points p, q1, q2 ∈ R2 with (i) ‖pq1‖ ≤ δ,

(ii) ‖pq2‖ ≤ δ, and (iii) the smallest angle ∠q1pq2 is greater than or equal to π/2,

it follows that:

(1) the portion T = (∂©p) \ (©q1 ∪©q2) of the boundary ∂©p consists of one or

two circular arcs;

(2) if T consists of one circular arc, then the arc length is less than or equal to

π/2 + 2 arcsin(δ/2); and

(3) if T consists of two circular arcs, then each arc length is less than 2 arcsin δ.
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q1

p q2

π/2

δ

δ

arcsin δ
2

(a)

arcsin δ
2

p q2q1
δ δ

< 2δ

< 2 arcsin δ

(b)

Fig. 2. Proof of Lemma 3.

Proof. Statement (1) is clearly true. We start by proving statement (2). The

arc length ‖T‖ is maximized as the angle ∠q1pq2 decreases while the distances

‖pq1‖, ‖pq2‖ are kept constant, therefore it suffices to consider the case in which

∠q1pq2 = π/2. The arc T centered at p can be decomposed into three arcs by rays

in directions q1p and q2p, as shown in Fig. 2(a). The central arc measures π/2, while

each of the other two arcs measures arcsin(δ/2), proving statement (2).

Next, we prove statement (3). Let T1, T2 denote the two arcs that form T with

‖T1‖ ≥ ‖T2‖. The arc length ‖T1‖ is maximized in the limit when ‖T2‖ = 0, as

shown in Fig. 2(b). The rays connecting q1 and q2 to the two extremes of T1 are

parallel, and therefore ‖T1‖ < 2 arcsin δ.

We are now able to prove the following theorem, which presents our 4-approxi-

mation algorithm for point sets of constant diameter.

Theorem 4. Given two sets of points P and P ′ as input, with P ′ ⊆ P , |P | = n, and

diam(P ) = O(1), the PDS can be 4-approximated in O(n) time on the real-RAM.

Proof. First, determine a bounding box of constant size for P , as in the algorithm

for the WIS. Within this bounding box, create a grid with cells of diameter γ = 0.24

and side γ/
√

2 (any positive γ satisfying

γ +

√
8− 8 cos

( π
2 + 2 arcsin(γ2 )

2

)
< 2

suffices). Note that the number of grid cells is constant, and therefore the points

of P can be partitioned among the grid cells in O(n) time (even without using

the floor function or hashing). Then, build the subset Q ⊆ P as follows. For each

non-empty grid cell, add to Q the (at most four) extreme points inside the cell, i.e.,

those presenting minimum or maximum coordinate in either dimension. Ties are

broken arbitrarily. Since there is a constant number of grid cells and Q contains at

most four points per cell, it follows that |Q| = O(1). Now determine the smallest
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P ′-dominating subset D∗ ⊆ Q. To do that, examine the subsets of Q, from smallest

to largest, verifying if all points of P ′ are dominated, until the dominating set D∗

if found and returned as the approximate solution. Since Q has a constant number

of points, this procedure takes O(n) time.

Now we show that the returned solution D∗ is indeed a 4-approximation. We

argue that, given a P ′-dominating set D ⊆ P , there is a P ′-dominating set D′ ⊆ Q
with |D′| ≤ 4 |D|. To build the set D′ from D, proceed as follows. For each point

p ∈ D, if p ∈ Q, add p to D′. Otherwise, since the set Q contains points of extreme

coordinates in both x and y axes, in the cell of p, there are two points q1, q2 ∈ Q
such that (i) ‖pq1‖ ≤ γ, (ii) ‖pq2‖ ≤ γ, and (iii) the smallest angle ∠q1pq2 is at

least π/2. Add these two points q1, q2 to D′.

By Lemma 3, the portion T = (∂©p) \ (©q1 ∪©q2) of ∂©p consists of one or

two circular arcs. First consider the case in which T consists of one circular arc.

Let R be the set of points from P ′ which are dominated by p, but not by q1 or q2.

If R is empty, then no extra point needs to be added to D′. Otherwise, the line `

which contains p and bisects T separates R into two (possibly empty) sets R1, R2. If

R1 6= ∅, let p3 be an arbitrary point of R1. Since Q contains a point in the same cell

as p3, there is a point q3 with ‖p3q3‖ ≤ γ. Add the point q3 to D′. Analogously, if

R2 6= ∅, let p4 be an arbitrary point of R2 and let q4 ∈ Q be a point with ‖p4q4‖ ≤ γ.

Add the point q4 to D′.

We now show that the four points q1, q2, q3, q4 ∈ Q dominate all points domi-

nated by p. Consider a point v that is dominated by p but not by q1 or q2. The point

v must be inside the circular crown sector depicted in Fig. 3(a) and described as

follows. Because v is dominated by p, we have ‖pv‖ ≤ 2. By Lemma 3, the arc length

‖T‖ < 1.82. Also, ‖pv‖ > 1, because otherwise the unit circles centered at p and v

would intersect forming an arc of length at least 2π/3, which is greater than ‖T‖,
in which case v is dominated by q1 or q2. Finally, since v is closer to p than it is to

q1 or q2, it follows that v must be between the lines that connect p to the endpoints

of T . This circular crown sector is bisected by the line `. By the law of cosines, the

diameter of each circular crown sector is d =
√

8− 8 cos(‖T‖/2) < 1.76. Therefore,

for any point v inside the circular crown sector, the point q3 (or q4, analogously)

that is within distance at most γ from a point inside the same sector dominates v,

as ‖vq3‖ ≤ d+ γ < 2.

Finally, if T consists of two circular arcs T1, T2 centered in p, then start by

adding those same points q1, q2 to D′, as if T consisted of only one arc. Then, if

necessary, add new points q3, q4 to D′ as follows. The points that are dominated

by p but not by q1 or q2 must be within distance 1 of either T1 or T2. Let p3, p4
be arbitrary points that are within distance 1 of T1 or T2, respectively, but are not

dominated by q1 or q2. If such points p3, p4 exist, then there are two points q3, q4
in Q that are within distance at most γ from respectively p3, p4. By Lemma 3, the

largest arc among T1, T2 measures at most 0.49. The proof that all points dominated

by p are dominated by q1, q2, q3, or q4 is analogous to the case in which T consists
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d < 1.76
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1
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T1 < 0.49

d < 1.22
1

1

Fig. 3. Proof of Theorem 4.

of a single arc, using the circular crown sector illustrated in Fig. 3(b).

Since D∗ is minimum among all subsets of Q that are P ′-dominating sets, D∗

is a 4-approximation for the PDS.

The following theorem uses the shifting strategy to obtain a (4 + ε)-approxima-

tion for point sets of arbitrary diameter.

Theorem 5. Given two sets of points P and P ′ as input, with P ′ ⊆ P and |P | = n,

the PDS can be (4 + ε)-approximated in O(n) time on the real-RAM with constant-

time hashing and the floor function. Without these operations, it can be done in

O(n log n) time.

Proof. Let k be the smallest integer such that(
k + 2

k

)2

≤ 1 +
ε

4
. (2)

The algorithm proceeds as follows. For i, j from 0 to k − 1, create a grid with

cells of side 2k rooted at (2i, 2j) and, for each cell C in the grid, use Theorem 4

to 4-approximate the PDS with point sets P ∩ C+
2 (the points of P that belong to

the 2-expansion of C, see Fig. 4) and P ′ ∩ C, obtaining a solution Di,j(C). The

dominating set Di,j is constructed as the union of the dominating sets Di,j(C) for

all grid cells C. Return the smallest dominating set Di,j that is found, call it D∗.

To prove that the returned solution is indeed a (4 + ε)-approximation, we

use again a probabilistic argument. Let i, j be picked uniformly at random from

0, . . . , k − 1 and let OPT denote the optimal solution. For every cell C, we have

|Di,j(C)| ≤ 4
∣∣OPT ∩ C+

2

∣∣ .
Consequently, by summing over all grid cells,

|Di,j | =
∑
C

|Di,j(C)| ≤ 4
∑
C

∣∣OPT ∩ C+
2

∣∣ .
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14

4

C2k

C+
2

2k + 4

Fig. 4. Grid rooted at (2, 4) with cells of side 10 and the 2-expansion of a cell.

We can now bound E[|Di,j |], since

E[|Di,j |]
4

≤ E

[∑
C

∣∣OPT ∩ C+
2

∣∣] = E

 ∑
p∈OPT

|C+2 (p)|

 =
∑

p∈OPT

E
[
|C+2 (p)|

]
by the linearity of expectation. Note that since the expected size of C+2 (p) is the

same for all points, it corresponds to the ratio between the areas of C+
2 and C,

namely

E
[
|C+2 (p)|

]
=

area(C+
2 )

area(C)
=

(
k + 2

k

)2

.

Therefore, by using inequality (2), we obtain

E[|Di,j |] ≤ 4

(
k + 2

k

)2

|OPT | ≤ 4
(

1 +
ε

4

)
|OPT | = (4 + ε) |OPT |.

Since the smallest among the dominating sets Di,j has no more than their average

number of elements, the set D∗ returned by the algorithm satisfies

|D∗| ≤ E[|Di,j |] ≤ (4 + ε) |OPT |,
closing the proof.

The DS is the special case of the PDS in which P ′ = P , and thus it can be

(4 + ε)-approximated in linear time by the same algorithm.

In the minimum distance d-dominating set problem (MDDS), the input consists

of a graph and an integer d, and the goal is to find a minimum subset of vertices

such that all graph vertices are within distance at most d from a vertex in the subset

(here d is the graph distance, that is, the number of edges in a shortest path). The

DS is a special case in which d = 1. Our algorithm for the DS can be generalized to

(4+ε)-approximate the MDDS in linear time for constant d. In contrast, the greedy

heuristic that gives a 5-approximation to the DS gives a Θ(d2)-approximation to

the MDDS.
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5. VC for UDGs

In this section, we show how to obtain a linear-time approximation scheme to the

VC on unit disk graphs. We start by presenting an approximation scheme for point

sets of constant diameter, and then we use the shifting strategy to generalize the

result to arbitrary diameter. Differently from the two previous problems, the size

of a minimum vertex cover for a point set of constant diameter is not bounded by

a constant. Therefore, strictly speaking, a coreset for the problem does not exist.

Nevertheless, it is possible to use coresets to approach the problem indirectly. We

remark that a different linear-time approximation scheme to the VC was presented

by Marx.18

Given a graph G = (V,E) with n vertices, it is well known that I is an indepen-

dent set if and only if V \ I is a vertex cover. While a maximum independent set

corresponds to a minimum vertex cover, a constant approximation to the maximum

independent set does not necessarily correspond to a constant approximation to the

minimum vertex cover. However, in certain cases, an even stronger correspondence

holds, as we show in the following proof.

Theorem 6. Given a set P of n points as input, with diam(P ) = O(1), the VC

can be (1 + ε)-approximated in O(n) time on the real-RAM, for constant ε > 0.

Proof. Our algorithm considers two cases, depending on the value of n. If

n <

(
1 +

3

4ε

)
(diam(P ) + 2)2

4
,

then n is constant, and the VC can be solved optimally in constant time.

Otherwise, use Theorem 1 to obtain a 4-approximation I to the maximum in-

dependent set (other constant factor approximations can be used, adjusting the

threshold accordingly). We now show that V = P \I is a (1+ε)-approximation to the

minimum vertex cover. Let IOPT , VOPT respectively be the maximum independent

set and the minimum vertex cover. Note that |V | = n−|I| and |VOPT | = n−|IOPT |.
By a simple packing argument, dividing the area of a disk of diameter diam(P ) + 2

by the area of a unit disk,

|IOPT | ≤
(diam(P ) + 2)2

4
,

and consequently

n ≥
(

1 +
3

4ε

)
|IOPT | =

(
1 +

3

4ε

)
(n− |VOPT |).

Manipulating the previous inequality, we obtain

n ≤ 4ε+ 3

3
|VOPT |. (3)

Since I is a 4-approximation to IOPT ,

|V | = n− |I| ≤ n− |IOPT |
4

=
4n− |IOPT |

4
=

3n+ |VOPT |
4

. (4)
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Combining (3) and (4), we can write |V | ≤ (1 + ε)|VOPT |, as desired.

Using the shifting strategy the following result ensues.

Theorem 7. Given a set P of n points in the plane as input, the VC for the

corresponding UDG can be (1 + ε)-approximated in O(n) time on the real-RAM

with constant-time hashing and the floor function, for constant ε > 0. Without

these operations, it can be done in O(n log n) time.

Proof. Let k be the smallest integer such that(
k + 2

k

)2

≤ 1 + ε

1 + ε
2

. (5)

The algorithm proceeds as follows. For i, j from 0 to k − 1, create a grid with

cells of side 2k rooted at (2i, 2j) and, for each cell C in the grid, use Theorem 6 to

(1 + ε/2)-approximate the VC for P ∩C+
2 , obtaining a solution Vi,j(C). The vertex

cover Vi,j is constructed as the union of the vertex covers Vi,j(C) for all grid cells

C. Return the smallest vertex cover Vi,j that is found, call it V ∗.

To prove that the returned solution is indeed a (1 + ε)-approximation, once

again we use a probabilistic argument. Let i, j be picked uniformly at random from

0, . . . , k − 1 and let OPT denote the optimal solution. For every cell C, we have

|Vi,j(C)| ≤
(

1 +
ε

2

) ∣∣OPT ∩ C+
2

∣∣ .
Consequently, by summing over all grid cells,

|Vi,j | =
∑
C

|Vi,j(C)| ≤
(

1 +
ε

2

)∑
C

∣∣OPT ∩ C+
2

∣∣ .
We can now bound E[|Vi,j |], since

E[|Vi,j |]
1 + ε

2

≤ E

[∑
C

∣∣OPT ∩ C+
2

∣∣] = E

 ∑
p∈OPT

|C+2 (p)|

 =
∑

p∈OPT

E
[
|C+2 (p)|

]
by the linearity of expectation. Note that since the expected size of C+2 (p) is the

same for all points, it corresponds to the ratio between the areas of C+
2 and C,

namely

E
[
|C+2 (p)|

]
=

area(C+
2 )

area(C)
=

(
k + 2

k

)2

.

Therefore, by using inequality (5), we obtain

E[|Vi,j |] ≤
(

1 +
ε

2

)(k + 2

k

)2

|OPT | ≤ (1 + ε) |OPT |.

Since the smallest among the vertex covers Vi,j has no more than their average

number of elements, the set V ∗ returned by the algorithm satisfies

|V ∗| ≤ E[|Vi,j |] ≤ (1 + ε) |OPT |,
closing the proof.
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(a) (b)

Fig. 5. Examples of (a) type-1 and (b) type-2 edges.

6. WIS for Rectangles of Bounded Size

In this section, we consider the case in which the input is no longer a set of points,

but a set of rectangles instead. Let λ be a constant and S a set of axis-aligned

rectangles R1, . . . , Rn in the plane, such that each rectangle Rq, for q = 1, . . . , n,

has width and height between 1 and λ, and weight w(Rq). Let G be the intersection

graph of S. The shifting coresets method is applied to obtain a linear-time (6 + ε)-

approximation algorithm to the maximum-weight independent set of G.

The overlap of two rectangles Rq, Rs is defined as the minimum (horizontal or

vertical) translation distance of a single rectangle Rq necessary to make the interiors

of Rq and Rs disjoint. The following lemma bounds the chromatic number of the

intersection graph of rectangles with a small overlap.

Lemma 8. If S is a set of axis-aligned rectangles such that

(1) the width and height of each rectangle is at least 1, and

(2) overlap(Rq, Rs) < 1/3 for every two distinct rectangles Rq, Rs ∈ S,

then the intersection graph G of S is 6-colorable.

Proof. Let S be a set as required and G its intersection graph. A graph is 1-planar

if it can be drawn on the plane in a way that each edge intersects at most one other

edge. Borodin showed that 1-planar graphs are 6-colorable.28 We prove the lemma

by providing such a 1-planar drawing for G.

For each rectangle Rq ∈ S, draw vertex vq on the center of Rq. Given two

intersecting rectangles Rq, Rs, the edge vqvs is drawn as two straight line segments,

connecting vq to the center of the rectangle Rq∩Rs and then to vs. We show that at

most one other edge may cross the edge vqvs. Note that the edge vqvs is completely

inside the region Rq ∪Rs.
When two rectangles Rq, Rs ∈ S intersect one another, there are two possible

types of edges corresponding to the relative positions of the rectangles (Fig. 5):

(1) Rq contains two corners of Rs (or vice versa); or

(2) Rq contains one corner of Rs, and vice versa.

We show that a type-1 edge vqvs cannot possibly be crossed by any other edge.

Indeed, if Rq contains two corners of Rs, then the straight segment from vs to the
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Rq′′
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Fig. 6. Crossing twice a type-2 edge.

center of Rq ∩ Rs belongs to an axis-aligned line ` that bisects Rs. This segment

cannot be crossed by any edge vq′vs′ . Otherwise, the centers of the intersecting

rectangles Rq′ , Rs′ ∈ S would belong to distinct halfplanes defined by `, and at

least one of these rectangles, say Rq′ , should cross `. Since, by the maximum overlap

allowed in S, the length of the segment of ` which can be contained in Rq′ measures

at most 2/3 (i.e., 1/3 inside Rq plus 1/3 inside Rs), a contradiction ensues, because

Rq′ measures at least 1 on both dimensions. The straight segment from vr to the

center of Rq ∩Rs, on its turn, cannot be crossed by any other edge vq′vs′ because,

since the edge vq′vs′ is drawn completely inside the region Rq ∪ Rs, one of the

rectangles, say Rq′ , should intersect that segment, yet it should not contain any of its

points whose distance to the border of Rq that intersects Rs is greater than 1/3. But

now, since both sides of Rq′ are greater than 1, it follows that overlap(Rs, Rq′) ≥
2/3, a contradiction.

It remains to show that a type-2 edge vqvs can be crossed by at most one other

edge (which must also be a type-2 edge). Suppose, for the sake of contradiction,

that vqvs is crossed by two other edges, vq′vq′′ and vs′vs′′ , as illustrated in Fig. 6.

Now, without loss of generality, the maximum allowed overlap implies that:

• the width αx of Rq ∩Rq′ satisfies αx < 1/3;

• the width βx of Rs ∩Rs′ satisfies βx < 1/3;

• the width γx and height γy of Rq′ ∩Rs′′ satisfy either γx < 1/3 or γy < 1/3.

If γx < 1/3, then the width of Rq′ is αx + βx + γx < 1, a contradiction. If, on the

other hand, γy < 1/3, then an analogous contradiction ensues on the y direction.

Given a set S of rectangles, the diameter diam(S) is the maximum distance

between two vertices of the rectangles in S. We are now able to prove the follow-

ing theorem, which presents our 6-approximation algorithm for sets of constant

diameter.

Theorem 9. Given a set S of n axis-aligned weighted rectangles as input, such that

diam(S) = O(1) and each rectangle in S has width and height at least 1, the WIS on
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the intersection graph of S can be 6-approximated in O(n) time on the real-RAM.

Proof. Represent each rectangle Rq ∈ S by four real values (xq, yq, wq, hq), corre-

sponding to the x and y coordinates of its center, its width, and its height. The set S

can thus be seen as a constant-diameter set of points in R4. Create a 4-dimensional

grid with cells of side δ = 0.1 (any positive δ < 1/9 suffices), and define the set

S′ by choosing the element of S with maximum weight inside each non-empty grid

cell. Note that since diam(S) = O(1), we have |S′| = O(1), so the maximum-weight

independent set among the points of S′ can be computed in constant-time by brute

force. Return such a set.

To prove the returned solution is indeed a 6-approximation, we show that, given

an independent set I ⊆ S, there is an independent set I ′ ⊆ S′ such that |I ′| ≥
|I|/6. Let J ′ ⊆ S′ be the set of rectangles obtained by selecting, for each rectangle

Ri ∈ I, the rectangle R′i ∈ S′ whose corresponding 4-dimensional point lies inside

the same grid cell as that of Ri. Note that since S′ contains the maximum weight

rectangle inside each grid cell, we have w(J ′) ≥ w(I), even though J ′ may not be

an independent set. We claim that the rectangles in J ′ overlap by less than 1/3,

hence Lemma 8 can be employed to partition J ′ into 6 independent sets. Let I ′ be

set of maximum weight among the partitions. Since 6w(I ′) ≥ w(J ′), it follows that

6w(I ′) ≥ w(I), proving the theorem.

To prove the claim, consider two disjoint rectangles R1 = (x1, y1, w1, h1), R2 =

(x2, y2, w2, h2) ∈ I. Let R′1 = (x′1, y
′
1, w

′
1, h
′
1), R′2 = (x′2, y

′
2, w

′
2, h
′
2) be the corre-

sponding rectangles in J ′. Because the grid cells have side δ < 1/9, we have that

all the following quantities are less than 1/9, for i = 1, 2: |xi − x′i|, |yi − y′i|, |wi −
w′i|, |hi − h′i|. The possible horizontal overlap between R′1 and R′2 may come from

two sources: a displacement (by less than 1/9 for each rectangle) and a change in

size, which moves the boundary of each rectangle by less than 1/18. Therefore, the

maximum horizontal overlap is at most 2/9 + 2/18 = 1/3. The same argument

bounds the maximum vertical overlap.

Using the shifting strategy, we extend the result for sets of arbitrary diameter.

Theorem 10. Let λ ≥ 1 be a constant. Given a set S of n axis-aligned weighted

rectangles as input, such that each rectangle in S has width and height between 1

and λ, the WIS can be (6 + ε)-approximated in O(n) time on the real-RAM with

constant-time hashing and the floor function. Without these operations, it can be

done in O(n log n) time.

Proof. Let k be the smallest multiple of λ such that(
k − λ
k

)2

≥ 6

6 + ε
, (6)

and let k′ = k/λ.
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Throughout this proof, consider grids with square cells of side k and use the

same strategy as in the proof of Theorem 2, with some small modifications. To

make sure that the union of two independent sets, each belonging to a different

contraction of a cell, is still an independent set, we employ the contraction C−λ/2 of

C.

For i, j from 0 to k′ − 1, create a grid with cells of side k rooted at (λi, λj).

For each cell C in the grid, use Theorem 9 to obtain a 6-approximation Ii,j(C)

for the WIS whose input consists of all rectangles whose centers belong to C. The

independent set Ii,j is the union of all Ii,j(C). Return the maximum-weight set Ii,j
that is found, call it I∗.

We now prove that the returned solution I∗ is indeed a (6 + ε)-approximation.

Let i, j be picked uniformly at random from 0, . . . , k − 1 and let OPT denote the

optimal solution. For every cell C, we have

w(Ii,j(C)) ≥ 1

6
w(OPT ∩ C−λ/2).

Consequently, by summing over all grid cells,

w(Ii,j) =
∑
C

w(Ii,j(C)) ≥ 1

6

∑
C

w(OPT ∩ C−λ/2) =
1

6

∑
Rq∈OPT

ρ(Rq) w(Rq),

where ρ(Rq) denotes the probability that the center of a given rectangle Rq is

contained in some contracted cell. Because such probability is the same for all

rectangles, E[w(Ii,j)] can be bounded by

E[w(Ii,j)] ≥
1

6
ρ(Rq)

∑
Rq∈OPT

w(Rq) =
1

6
ρ(Rq) w(OPT ).

Note that, for all Rq ∈ S, ρ(Rq) corresponds to the ratio between the areas of C−λ/2
and C, namely

ρ(Rq) =
area(C−λ/2)

area(C)
=

(
k − λ
k

)2

.

Thus, inequality (6) yields

E[w(Ii,j)] ≥
1

6

(
k − λ
k

)2

w(OPT ) ≥ 1

6 + ε
w(OPT ).

Since I∗ has maximum weight among the independent sets Ii,j , it follows that

w(I∗) is at least as large as their average weight. Therefore, I∗ satisfies

w(I∗) ≥ E[w(Ii,j)] ≥
1

6 + ε
w(OPT ),

closing the proof.
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Fig. 7. (a) Example in which the approximation ratio for the DS is exactly 4. (b) Coin graph used

in the example in which the approximation ratio for the WIS is 3.25.

7. Conclusion

This paper introduced the method of shifting coresets, which, combining the shifting

strategy and the coresets paradigm, has allowed us to obtain improved linear-time

approximations for problems on unit disk graphs. The method is applicable to other

geometric intersection graph classes as well. The central idea of the method is the

creation of coresets to obtain approximate solutions when the inputs are point sets

of constant diameter. For the WIS and the DS on UDGs, the proposed algorithms

provide improved approximation ratios when compared to existing linear-time al-

gorithms, as shown in Table 1 in the Introduction.

While the approximation ratio for the WIS and the DS on UDGs is no greater

than 4 (for constant-diameter inputs), we only know that the analysis is tight for

the DS. Indeed, Fig. 7(a) shows a DS instance in which our algorithm does not

achieve an approximation ratio better than 4, even if we reduce the grid size and

search for extreme points in a larger number of directions. In contrast, for the WIS,

the best lower bound we are aware of is 3.25, as shown in the following example.

Let P1 be the weighted point set from Fig. 7(b), in which all adjacent vertices are

at distance exactly 2. Create another set P2 by multiplying the coordinates of the

points in P1 by 1 + ε, while multiplying their weights by 1− ε, for arbitrarily small

ε > 0. The set P2 forms an independent set of weight just smaller than 3.25, while

the maximum independent set in P1 has weight 1. Since each vertex in P2 has a

smaller weight and is arbitrarily close to a vertex of P1, the vertices of P2 will be

disregarded by the algorithm for the input instance P1 ∪ P2.

The analysis of the 6-approximation ratio for the WIS on rectangle intersection

graphs leaves an even bigger gap. The best lower bound we are aware of is 13/3,

since the graph illustrated in Fig. 8 (with 13 vertices and maximum independent set

with size 3) is in the graph class used in Lemma 8. In fact, it is possible that such

class is 5-colorable (the same graph in Fig. 8 shows it is not 4-colorable, though).

We remark that the need for c colors does not mean that the ratio between the

total weight of the vertices and the maximum weight of an independent set can be

as high as c.



March 15, 2017 15:20 WSPC/Guidelines udg-linear-journal

Shifting coresets: obtaining linear-time approximations for unit disk graphs 21

Fig. 8. A 5-chromatic graph in the class from Lemma 8, and its representation by slightly-
overlapping rectangles.

Several open problems remain. Is it possible to obtain an approximation ratio

better than 4 in O(n log n) time for the WIS on UDGs, or at least for the unweighted

version? Can the linear-time approximation scheme for VC be generalized for the

weighted version? Are the point coordinates really necessary, or is it possible to de-

vise similar graph-based algorithms? Also, can our method be used to obtain better

linear-time approximations to related problems on unit disk graphs such as finding

the minimum-weight dominating set or the minimum connected dominating set? Is

it possible to use the shifting coresets method to obtain a constant approximation

for the WIS on disk graphs (of arbitrary radii) in linear time? Finally, is it possible

to use similar ideas to derive improved linear-time approximations for problems on

other classes of graphs such as planar graphs, bounded treewidth graphs, etc.?
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