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Abstract

Control flow graphs represent the possible execution paths of a program and can be
obtained by static analysis of software binaries. We give a formal characterization
of the subclass of control flow graphs that correspond to structured code.
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1 Introduction

Structured programming can be viewed as a paradigm for describing and im-
plementing algorithms and computer programs. Roughly speaking, it consists
of a top-down formulation in which the algorithm is broken into blocks. Such
technique constrains the implementation to a set of allowed statements, sup-
porting basically three control structures: sequence, selection and iteration.

An early and important step towards structured programming was the
seminal article by Dijkstra, “Go-to statement considered harmful” [4], followed
by an extensive discussion in the literature (e.g., [8,9,13]). The influence of
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that new programming paradigm could also be noticed from the very outset on
the development of algorithms, either explicitly, as in Henderson and Snowdon
[7] and Knuth and Szwarcfiter [10], or implicitly, as in various graph algorithms
by Tarjan, e.g. [12]. The main guidelines of structured programming can be
found in [5].

A natural problem regarding structured programming is to recognize, di-
rectly from the program’s binary code, whether a given program is structured.
A possible approach is the use of the control flow graph of the program [1,3],
which is a directed graph representing the possible sequences of instructions
along the execution of a program and can be obtained by static analysis tools
after the disassembly of the code. Our problem then becomes a graph prob-
lem: given the control flow graph corresponding to some computer program,
decide whether the program has been written obeying the rules of structured
programming. Of course there are characterizations [6] and efficient recogni-
tion algorithms [11] for the well-known class of reducible graphs, a class which
contains all control flow graphs for structured programs. However, the former
class is much larger than the latter, and to our knowledge no attempt has
been made so far to fully characterize and recognize the latter class.

This work brings about the latest results of the research these authors
have been conducting with aims at solving software security problems through
applications of graph theory and graph algorithms (see, for instance, [2]).
We study the class of control flow graphs which correspond to structured
programs. We give both a characterization of this class and a polynomial-
time recognition algorithm, which is able to identify the maximal unstructured
subgraph of the given input. In fact, we define two classes of graphs: the first
one corresponds to classic, “pure” structured programs, restricted to the use
of sequence, selection and iteration statements; the second one is more general
and allows for two kinds of premature interruption of iterations (widely known
as break and continue statements), besides the use of selection statements with
divergent exits.

All graphs in this paper are directed. For a graph G, denote its vertex and
edge sets by V (G) and E(G), respectively. For v, w ∈ V (G), an edge from
v to w is represented by vw. We say vw is an out-edge of v and an in-edge
of w, and we let N+

G (v) = {w ∈ V (G) | vw ∈ E(G)} and N−G (v) = {w ∈
V (G) | wv ∈ E(G)}. A trivial graph contains solely one vertex. For vertices
v, w of a graph G, we say v reaches w when there is a path in G from v to w.
A source of G is a vertex that reaches all other vertices. A control flow graph
G contains at least one source, which is denoted s(G). A vertex that reaches
no other vertex is a sink of G. We represent by T (G) the set of sinks of G.
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Fig. 1. Statement graphs

2 Structured program graphs

A statement graph is a directed graph H satisfying the following:

(i) each vertex is labeled as either a regular (R) or an expansion (X) vertex;

(ii) H belongs to one of the following classes:
a) sequence graph (Fig. 1.1);
b) if graph (Fig. 1.2), convergent-if-then-else graph (Fig. 1.3) and divergent-

if-then-else graph (Fig. 1.6), also referred to as selection graphs;
c) while graph (Fig. 1.4) and repeat graph (Fig. 1.5), also referred to as

iteration graphs;
d) break-while graph (Fig. 1.7) and break-repeat graph (Fig. 1.8);
e) continue-while graph (Fig. 1.9) and continue-repeat graph (Fig. 1.10).

In particular, if G is a statement graph, the selected source s(G) corre-
sponds to a vertex labeled v1 in Fig. 1, and is called the head of G, while each
sink is called a tail of G.

Let G,H be vertex-disjoint flow graphs, and v ∈ V (G), such that |N+
G (v)| =

|T (H)| = 1, or |N+
G (v)| = 0 and |T (H)| ≥ 1. The expansion of v into H is the

operation that replaces v with H in G, i.e., it constructs a new graph G′ in



the following way:

(1) V (G′) = [V (G) \ {v}] ∪ V (H) \ T (H)

(2) N−G′(s(H)) = N−G (v)

(3) If |N+
G (v)| = 1, let N+

G (v) = {z}, and identify the unique sink t(H) of H

(4) N+
G′(t(H)) = N+

G (v), for t(H) ∈ T (H)

(5) N−G′(w) = N−G (w) \ {v} and N+
G′(w) = N+

G (v) \ {v}, for w ∈ V (G′) \
[V (H) ∪N+

G (v)]

(6) N−G′(w) = N−H (w) and N+
G′(w) = N+

H (w), for w ∈ V (H)\ [{s(H)∪T (H)}]
Similarly, for a flow graph G′ and a flow subgraph H of G′, the contraction

of H is the operation that contracts H into a single vertex v.

Definition 2.1 A structured program (SP) (respectively, extended structured
program (ESP)) graph is recursively defined as a flow graph in which each
vertex is either a regular (R) or an expansion (X) vertex, and such that a
trivial graph is an SP (resp., ESP) graph, and any graph obtained from an
SP (resp., ESP) graph by expanding an X-vertex into a statement graph from
Fig. 1(1-5) (resp., from Fig. 1(1-10)) is also an SP (resp., a ESP) graph.

An induced subgraph H of a graph G is called basic if (i) H is isomorphic
to some statement graph, and (ii) whenever H is the divergent-if-then-else
graph, the sinks of H are also sinks of G. We also say H is closed if (i)
v ∈ v(H), v 6∈ {s(H)} ∪ T (H) ⇒ N+

H (v) = N+
G (v) and N−H (v) = N−H (v); and

(ii) N+
H (s(H)) = N+

G (s(H)). A graph is called prime when it is non-trivial,
basic and closed.

Note that when expanding some expansion vertex v into a non-trivial SP
(ESP) graph, new expanding vertices are introduced. Note also that the ex-
pansion of v into a trivial vertex must change the label of v from X to R. The
following theorem characterizes SP (ESP) graphs.

Theorem 2.2 A graph G is an SP (respectively, ESP) graph if and only if
there is a sequence of graphs G0, . . . , Gk, such that (i) G0 is the trivial graph,
(ii) Gk = G, and (iii) Gi is obtained from Gi−1 by expanding some X-vertex
of Gi−1 into a statement graph whose vertices are labeled as in Fig. 1(1-5)
(resp., as in Fig. 1(1-10)).

3 Recognition algorithm

Let H(G) be the collection of prime subgraphs of graph G. For H ∈ H(G),
denote by G[H ↓] the graph obtained from G by contracting H. Call H



the contracting prime of G. Let H,H ′ ∈ H, H 6= H ′, and vw an edge of
H ′. The image of vw in G[H ↓], denoted IG[H↓](vw), is the ordered pair of
vertices of G[H ↓] defined as follows: IG[H↓](vw) = vw, if vw ∈ E(G[H ↓]);
otherwise, IG[H↓](vw) equals either s(H)w or vt(H), according to whether or
not w ∈ V (G[H ↓]). The image of any edge vw ∈ E(H ′) is unique and can
always be determined this way. More generally, the image of H ′ in G[H ↓] is
the subgraph of G[H ↓] defined by the subset of edges {e′ ∈ E(G[H ↓]) | e′ ∈
IG[H↓](e), e ∈ E(H ′)}. Extending the definition, let IG[H↓](H) = ∅.

Two prime subgraphs H,H ′ of G are independent when either V (H) ∩
V (H ′) = ∅ or V (H) ∩ V (H ′) = {v}, where v is either the common tail of H
and H ′, or v is the tail of H and the head of H ′.

Lemma 3.1 Let G be an arbitrary graph and H,H ′ ∈ H(G), H 6= H ′. Then
IG[H↓](H

′) ∈ H(G[H ↓]), and G[H ↓][IG[H↓](H
′) ↓] = G[H ′ ↓][IG[H′↓](H) ↓].

A sequence of graphs G0, . . . , Gk is a contractible sequence of G when
G = G0, and Gi+1 = Gi[Hi ↓], for some prime subgraph Hi ∈ H(Gi), i < k.
The contractible sequence G0, . . . , Gk is maximal when Gk does not contain
prime subgraphs. In particular, if Gk is the trivial graph then the sequence
G0, . . . , Gk is maximal. Let S ≡ G0, . . . , Gk be a contractile sequence. Denote
by Hj the contracting prime of Gj, j < k. The concept of the image of a
prime H ′ ∈ H(Gj) in Gj+1 is extended to any graph Gq of S, j+1 ≤ q ≤ k, as
follows: IGp(H ′) = IGp(IGp−1(H

′)), for j + 1 ≤ p ≤ q. The subgraph IGq(H
′)

is the image of H ′ in Gq.

Theorem 3.2 Let G be an arbitrary graph, with S ≡ G0, . . . , Gk and S ′ ≡
G′0, . . . , G

′
k′

two maximal contractible sequences of G. Then, Gk and G′k′ are
isomorphic. Furthermore, k = k′.

Algorithm 1 Recognizing (extended) structured graphs

unmark all vertices of G
repeat

choose any unmarked vertex v ∈ V (G) and mark it
if v is the head of some prime subgraph H of G then

contract H into v
unmark all marked vertices of the remaining graph

if G is the trivial graph then
stop: G is an SP graph

until all vertices are marked
stop: G is not an SP graph



Corollary 3.3 Let G be an arbitrary graph and G0, . . . , Gk any contractible
sequence of it. Then G is an SP graph if and only if Gk is a trivial graph.

Given the characterization of the class (Theorem 2.2) and the uniqueness
of maximal contractible sequences (Theorem 3.2), the recognition algorithm
becomes straightforward (see Algorithm 1). Observe that there can be can be
O(n) prime subgraphs. Each time one such subgraph is identified, all marked
vertices that still remain in the graph become unmarked, therefore any vertex
can be unmarked at most O(n) times. In addition, verifying whether a vertex
v is the head of some prime subgraph can be done in O(1) time. The overall
complexity of the algorithm is thus O(n2).
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Appendix: omitted proofs

Theorem 2.2

Proof: Suppose G is an SP (ESP) graph. It follows from its definition that G
can be constructed by starting from a trivial graph G0, whose vertex is labelled
X, and iteratively replacing expansion vertices by statement graphs. Let k
be the number of iterations (expansions) performed in the construction of G.
At iteration i, denote by Gi the graph obtained from Gi−1 by expanding some
expansion vertex of Gi−1 into a statement graph 0 ≤ i ≤ k. Then Gk = G
and the sequence G0, . . . , Gk satisfies the conditions of the theorem.

Conversely, suppose that there exists a sequence of graphs G0, . . . , Gk sat-
isfying the conditions (i)-(iii) of the theorem. Conditions (i) and (iii) suffice
to show that Gi is an SP (ESP) graph, for all 0 ≤ i ≤ k, and condition (ii)
implies G is an SP (ESP) graph. 2

Lemma 3.1

Proof: First, observe that, since H,H ′ are closed, H1 ∩ H2 can only contain
heads and tails of H and H ′. Again, because H,H ′ are closed, we know that
N+

H1
(s(H1)) = N+

G (s(H1)), and N+
H2

(s(H1)) = N+
G (s(H2)).

Now examine the alternatives for |H ∩ H ′|. If |H ∩ H ′| ≤ 1, the above
discussion implies that H,H ′ must be independent. If |H ∩ H ′| = 0, H,H ′

are disjoint, implying that IG[H↓](H
′) = H ′ and IG[H′↓](H) = H. Then (i)

and (ii) are clearly valid. Consider |H ∩H ′| = {v}. Since H,H ′ have distinct
heads, it follows that v is either the common tail of H,H ′ or the head of one
of them, coinciding with the (unique) tail of the other one. In the first case,
H is replaced by edge s(H1)v in G[H ↓], preserving H ′ as a prime subgraph.
If v is the head of H and the tail of H ′, then H is replaced by edge vt(H),
again preserving H ′ as a prime subgraph of G[H ↓]. Finally, when v is the
tail of H and the head of H ′, it follows that H becomes the edge vt(H)
in G[H ↓], maintaining H ′ as a prime subgraph once again. Consequently,
H ′ ∈ H(H) in all cases, and (i) holds. To show that (ii) is true for |H∩H ′| ≤ 1,
proceed as follows. If |H ∩ H ′| = 0, then in both G[H ↓][IG[H↓](H

′) ↓] and
G[H ′ ↓][IG[H′↓](H) ↓], the primes H and H ′ are replaced by the non-adjacent
edges s(H)t(H) and s(H ′)t(H ′), respectively, implying that (ii) holds. When
H ∩ H ′ = {v}, again consider the above three possible alternatives. If v is
the common tail of H and H ′, then these subgraphs are contracted into edges
s(H)v and s(H ′)v, respectively, in both subgraphs G[H ↓][IG[H↓](H

′) ↓] and



G[H ′ ↓][IG[H′↓](H) ↓], while the remaining vertices and edges are all preserved,
implying that (ii) holds. If v is the head of H and tail of H ′, then, after the
two contractions, H and H ′ become edges vt(H) and s(H ′)v, respectively, also
implying (ii). The case when v is the tail of H and head of H ′ is analogous.

Finally, consider the alternative |H ∩H| > 1, i.e., |H ∩H ′| = 2. The only
possibility here is that H,H ′ are both sequence graphs, whereupon H ∪ H ′

induces a closed directed P4 in G. Let v1, v2, v3, v4 be such a path and v1 the
head of H. Then V (H) = {v1, v2, v3} and V (H ′) = {v2, v3, v4}. It follows
that G[H ↓] reduces H to edge v1v3, and consequently H ′ is reduced to v3v4.
Thus, IG[H↓](H

′) is a closed P3, namely v1, v3, v4. The latter graph is clearly
a prime of G[H ↓], that is, IG↓H(H ′) ∈ H(G[H ↓]), and (i) holds. To prove
(ii), observe that IG[H′↓](H) is a closed P3 with vertices v1, v2, v4, meaning
that H ∪H ′ becomes edge v1v4 in both IG[H↓](H

′)[H ′ ↓] and IG[H′↓](H)[H ↓].
Therefore, G[H ↓][IG[H↓](H

′) ↓] = G[H ′ ↓][IG[H′↓](H) ↓]. 2

Theorem 3.2

Proof: Without loss of generality, assume k ≤ k′.

Denote by Hj and H ′j the contracting primes of Gj and G′j, respectively.
That is, Gj+1 = Gj[Hj ↓] and G′j+1 = G′j[H

′
j ↓]. Let i < k be the largest

index such that S and S ′ coincide up to it. That is, Gj = G′j, for 0 ≤ j ≤ i,
but Gi+1 6= G′i+1. Since G0 = G′0, such an index exists, and we have Gi+1 =
Gi[Hi ↓], G′i+1 = G′i[H

′
i ↓], and Hi 6= H ′i. By Lemma 2(i), IG′i+1

(Hi) 6= ∅ and
∅ 6= IG′p(Hi) ∈ H(G′p), as long as IG′p(Hi) does not become the contracting
prime of G′p, for some p ≥ i+ 1. Since S is maximal, by Lemma 2, there must
exist some index ` ≥ i + 1 such that H ′` = IG′`(Hi). That is, the contracting
prime of G′` is precisely the image of Hi in G′`. By Lemma 2(ii), we can swap
the corresponding images of the contracting primes of G′`−1 and G′`, while
preserving G′`+1, i.e.,

G′`−1[H
′
`−1 ↓][IG′`−1[H

′
`−1↓](Hi) ↓] = G′`−1[IG′`(Hi) ↓][IG′`−1[IG′

`
(Hi)↓](H

′
`−1) ↓].

Define new contractible sequences S(j), i ≤ j ≤ k − 1, as follows. First,
let S(i) ≡ S ′, and define S(i + 1) initially coinciding with S(i). Now let
S(i + 1), the corresponding image of Hi, become the contracting prime of
G′`−1, instead of G′`, while the image of H ′`−1 becomes the contracting prime of
G′`−2. That is, the images of Hi and H ′`−1 swap positions in S(i−1), implying
that the graphs G′`−1 and G′` are modified. However, by the above equality,



the graph G′`+1 is preserved, and consequently all graphs G′j, j ≥ ` + 1, are
also preserved. However, the image of Hi shifted one position to the left.
Iteratively, proceed exchanging positions between the image corresponding to
Hi and the contractible prime on its left, until eventually Hi itself reaches
index i, that is, Hi becomes the contractible prime of G′i. Hence the new
graph of S(i + 1) at index i + 1 becomes G′i ↓ Hi, which is precisely the
graph Gi. Consequently, S and S(i + 1) coincide up to index i + 1, while
preserving the terminal graphs Gk and G′k′ . By iterating such a process for
i + 1, i + 2, . . . , k − 1, we conclude that S(k − 1) coincides with S up to
index k − 1. Let G′k−1(k − 1) denote the graph of S(k − 1) at index k − 1.
Then G′k′−1(k − 1) = Gk−1. However, Hk−1 is the unique prime of Gk−1,
and Gk−1[Hk−1 ↓] = Gk. Consequently, the same must hold for G′k−1(k − 1),
implying that Gk = G′k and k = k′. 2
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