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Abstract

The Radon number of a graph is the minimum integer r such that all sets of
at least r of its vertices can be partitioned into two subsets whose convex hulls
intersect. Determining the Radon number of general graphs in the geodetic
convexity is NP-hard. In this paper, we show the problem is polynomial for d-
dimensional grids, for all d ≥ 1. The proposed algorithm runs in near-linear
O(d (log d)1/2) time for grids of arbitrary sizes, and in sub-linear O(log d)
time when all grid dimensions have the same size.
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1. Introduction

The concept of convexity in graphs was borrowed from its most well-
known geometric counterpart, where a subset S of the Euclidean space is
dubbed convex if, for every two points x, y ∈ S, the interval consisting of the
straight segment connecting x and y is entirely contained in S. Formally, a
convexity space (or simply convexity, for short) φ consists of a pair (V, C),
where V is a set—the ground set—and C is a collection of subsets of V—the
convex sets—such that C contains both V and the empty set, and C is closed
under arbitrary intersections and nested unions.

The ground set of a geometric convexity is a set of points. Analogously,
the ground set of a graph convexity is the set of vertices of some connected
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graph G. Many different geometric convexities have been studied to date
(see, for instance, [3]) and the interval defined by two points is not always
the straight segment between them in Euclidean fashion. Likewise, several
distinct types of graph convexities have been considered in the literature [8],
with applications ranging from statistical physics and distributed computing
to marketing and social networks. In the geodetic graph convexity—also
known as geodesic convexity [6]—a set S ⊆ V (G) is convex if, for all x, y ∈ S,
every shortest path between x and y in G is entirely contained in S.

Given a subset V ′ of a ground set V , the convex hull of V ′, denoted [V ′],
is the unique minimal convex subset of V containing V ′. In the early 1920’s,
Johann Radon formulated a celebrated theorem stating that every set with at
least d+2 points in Rd can be partitioned into two subsets whose convex hulls
intersect [7]. A natural question concerns what happens when we consider
some general ground set V instead of Rd, and the Radon number of V is
defined as the minimum integer r such that every subset of V with at least
r elements can be partitioned in two sets whose convex hulls intersect. The
Radon number of graphs has been used to model some problems occurring,
for instance, in social networks.

A simple reduction from the maximum clique problem can be used to
prove the NP-hardness of finding the Radon number of a graph in the geodetic
convexity, hence a natural task is to determine such parameter for particular
graph classes. We are interested in the class of d-dimensional grids, i.e.,
the Cartesian products of d paths of arbitrary sizes. A lot of insight on
the problem was gained in [1]. In that paper, the authors derived general
bounds and solved the problem for special cases. Computer-assisted results
also disclosed (by brute force) the Radon number of all grids up to the ninth
dimension. However, a polynomial-time algorithm for determining the Radon
number of general grids was still outstanding.

In this paper, we introduce one such algorithm that runs inO(d (log d)1/2)
time. Additionally, a variation of our algorithm runs in sub-linear O(log d)
time for grids G = P d

n , that is, those in which all d dimensions have the same
size n.

2. The basics

If R is a subset of vertices of a graph G, then a partition R = R1 ∪R2 is
a Radon partition if [R1]∩ [R2] 6= ∅. A set which admits no Radon partitions
is called an anti-Radon set, also called a Radon-independent set by some
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authors. The Radon number of a graph G is thus the size of the maximum
anti-Radon set of G plus one.

A grid G = Grid(n1, . . . , nd) is the Cartesian product of d paths Pn1 ×
Pn2×. . .×Pnd

. The geodetic convexity on d-dimensional grids bears a natural
resemblance with the convexity defined on the Euclidean space Rd by the
Manhattan metric (u, v) 7→ ||u− v||1. If R = {u1, . . . , ur} is a set of vertices
of Grid(n1, . . . , nd) with ui = (ui1, . . . , u

i
d) for i ∈ [1, r] := {i ∈ N : 1 ≤ i ≤ r},

then it is easy to see that the convex hull [R] is the set of integer points in[
min
i∈[1,r]

ui1, max
i∈[1,r]

ui1

]
×
[

min
i∈[1,r]

ui2, max
i∈[1,r]

ui2

]
× · · · ×

[
min
i∈[1,r]

uid, max
i∈[1,r]

uid

]
. (1)

In other words, [R] equals the Cartesian product of the one-dimensional
convex hulls of the projections of R onto the d dimensions.

Having observed that, one can check whether a partition R = R1 ∪R2

is a Radon partition by simply inspecting the projections of R onto each
dimension. If, for some j ∈ [1, d], the greatest (smallest) coordinate of
the projection of R1 onto dimension ρj is less (greater) than the smallest
(greatest) coordinate of the projection of R2 on ρj, then the one-dimensional
convex hulls of the projections of R1 and R2 onto ρj do not intersect, and
[R1] ∩ [R2] = ∅. In this case, we say the projections of R1 onto ρj appear all
strictly to the left (all strictly to the right) of the projections of R2. If there
is no such j, then the convex hulls of R1 and R2 intersect, and R is a Radon
partition. Figure 1 illustrates the idea.

The problem of determining the Radon number of a grid G looks much
harder. Indeed, not only is the number of partitions of a given set R expo-
nential in |R|, but also the number of subsets R of the ground set V (G) that
would have to be checked in the worst case is exponential in |V (G)|.

In [2], Eckhoff determined the Radon number of the convexity space de-
fined on Rd by the Manhattan metric (u, v) 7→ ||u− v||1 as

r(d) := min

{
r ∈ N :

(
r⌊
r
2

⌋) > 2d

}
. (2)

In [4], Jamison-Waldner observed that Eckhoff’s result could be instantly
leveraged to Grid(n1, . . . , nd) provided nj ≥ r(d)− 1, for all j ∈ [1, d]. How-
ever, if the grid dimensions are not as large, Eckhoff’s result gives an upper
bound (which may not be tight). In the next section, we obtain the exact
geodetic Radon number of grids. We exploit the following theorem, rewritten
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Figure 1: (a) Radon partition of a set containing four vertices of a 2-dimensional grid:
on both dimensions the convex hulls of the projections of the partite sets intersect; (b)
not a Radon partition of a set containing four vertices of a 3-dimensional grid: there are
dimensions in which the projections of one of the partite sets appear all strictly to the left
of the projections of the other partite set.

from [1], which characterizes grids with anti-Radon sets of size r in a suitable
manner.

An ordered partition of a set V is a tuple ψ = (V 1, . . . , V n), where V 1 ∪
· · · ∪ V n is a partition of V .

Theorem 1 ([1]). Let d, n1, . . . , nd, r ∈ N. The graph Grid(n1, n2, . . . , nd)
has an anti-Radon set R with r vertices if and only if the set [1, r] admits d
ordered partitions (V 1

1 , . . . , V
n1
1 ), (V 1

2 , . . . , V
n2
2 ), . . . , (V 1

d , . . . , V
nd
d ) such that,

for every subset S of [1, r] with 1 ≤ |S| ≤ r/2, there are indices j ∈ [1, d] and
` ∈ [1, nj] satisfying either S = V 1

j ∪ · · · ∪V `
j or S = V `+1

j ∪V `+2
j ∪ · · · ∪V nj

j .

The spirit of Theorem 1 is that the actual coordinates of a given set
R ⊆ V (G) do not really matter for the sake of deciding whether R is an anti-
Radon set. What does matter is solely the sequence of orthogonal projections
of R onto each dimension of the grid. As a matter of fact, because there may
be coincident projections, what matters is the set of ordered partitions of R
determined by its projections along each dimension (each partite set contains
coinciding projections).

3. The algorithm

Let G = Grid(n1, . . . , nd). The proposed algorithm checks whether V (G)
contains an anti-Radon set of size r, starting from Jamison-Waldner’s upper
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bound r = r(d)−1 and iteratively decrementing it, possibly all the way until
r = 2.

We regard a non-trivial partition R1 ∪ R2 of [1, r], with |R1| = k ∈
[1, br/2c] without loss of generality, as a Radon partition template for any set
R ⊆ V (G) where |R| = r. We say it is a template of size k (or a k-template)
for r vertices, and we let 〈R1〉 denote it. A template 〈R1〉 is eliminated by
ordered partition ψj if all partite sets of ψj containing elements of R1 appear
either before the first partite set containing an element of R2 = [1, r] \R1 or
after the last partite set containing an element of R2 (analogously, if R1∪R2 is
a partition of some R ⊆ V (G), the projections of R1 appear either all strictly
to the left or all strictly to the right of the projections of R2 in dimension ρj).

By Theorem 1, it suffices to check, at any given iteration, if there exist
d ordered partitions ψ1, . . . , ψd of [1, r] (the number of partite sets in each
ψj matching the size nj of the j-th dimension of G) such that template
〈R1〉 is eliminated, for each non-empty subset R1 of [1, r] with |R1| ≤ r/2.
If that is the case, then G admits an anti-Radon set of size r. This way
we avoid the burden of testing the anti-Radonness of an overall exponential
number of subsets R of V (G) in the worst case, even though the number of
possible choices of d ordered partitions of [1, r], for each r, is still obviously
exponential.

We formulate three preliminary observations that set the basis for the
algorithm to come. The potential of dimension ρj (with respect to a set of r
vertices) stands for the maximum number of Radon partition templates for r
vertices that can be eliminated by the j-th ordered partition ψj. Finally, the
k-quota of dimension ρj with respect to a set of r vertices is the maximum
number of k-templates that can be eliminated by ψj.

Observation 2 ([1]). Given a subset R comprising r vertices of Grid(n1,
n2, . . . , nd) and some j ∈ [1, d], the potential of dimension ρj is given by

potentialr(j) := min{nj, r} − 1.

Observation 3. Given a set R with r elements and an integer k ∈ [1, br/2c],
the total number of k-templates for set R is given by

template countr(k) :=

{(
r
k

)
· 1
2
, if k = r

2(
r
k

)
, otherwise.

Proof. If k = r/2, then each k-template comprises two complementary sub-
sets of size k, hence the number of k-templates is half the number of subsets
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of size k. For other values of k, there is a bijection between the k-templates
and the subsets of size k.

Observation 4. Given a set R with r elements and an integer k ∈ [1, br/2c],
the k-quota of dimension ρj with respect to R is given by

k-quotar(j) :=

{
1, if k = r

2
or nj = 2

2, otherwise.

Proof. If k 6= r/2, the dimension ρj (analogously, the ordered partition ψj)
may eliminate at most two k-templates: the k-template whose projections
onto ρj appear all strictly to the left of the remaining projections, and the
k-template whose projections appear all strictly to the right of the remaining
projections, provided the size nj of that dimension is greater than 2. If nj = 2,
though, then only one k-template may be eliminated, since projecting exactly
k vertices onto the first coordinate of ρj and exactly k vertices onto the second
coordinate of ρj would leave no room for the other r − 2k > 0 projections
onto ρj.

If k = r/2, then two disjoint subsets R1, R
′
1 of [1, r] with |R1| = |R′1| = k

are complementary, therefore any two k-templates 〈R1〉, 〈R′1〉 eliminated by
an ordered partition ψj are actually one and the same bipartition of [1, r].

The pseudocode of the algorithm is shown as Algorithm 1. Each iteration
of the main, outer loop of the algorithm consists of an attempt to prove the
existence of an anti-Radon set of size r. It succeeds in doing so if it manages
to prove the existence (without actually exhibiting them, for performance
reasons) of d ordered partitions of [1, r], under the size constraints imposed
by the dimensions of grid G, so that all Radon partition templates for r
vertices are eliminated.

For each r, the algorithm initializes two auxiliary structures (lines 2–3)
which keep track of the quantities required by line 6. Then the inner loop
of the algorithm (lines 4–9) considers each template size k, one at a time,
from br/2c to 1. The number of k-templates that must be eliminated is given
by template countr(k) in Observation 3. Such k-templates are regarded as
identical balls of color k that must be distributed into distinct bins (the
dimensions), and the algorithm proceeds to distributing them (lines 5–9) in
such a way that

(i) the total number of balls assigned to a bin never exceeds the potential
of the corresponding dimension; and
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Algorithm 1 Geodetic Radon number of grids

input: the dimension sizes nj of a grid G, for j = 1, . . . , d
output: the Radon number of G

1 for r = r(d)− 1, r(d)− 2, . . . , 2 do
2 balls[j]← 0, for all j ∈ [1, d]
3 balls by color[j, k]← 0 for all j ∈ [1, d], k ∈ [1, br/2c]
4 for k = br/2c, br/2c − 1, . . . , 1 do
5 repeat template countr(k) times (see Observation 3)
6 find j such that potentialr[j]− balls[j] is maximum,

satisfying:
(i) balls[j] < potentialr[j] (see Observation 2)
(ii) balls by color[j, k] < k-quotar(j) (see Observation 4)

7 if no such j exists,
continue with the next r in line 1

8 balls[j]← balls[j] + 1
9 balls by color[j, k]← balls by color[j, k] + 1
10 return r + 1
11 return 2

(ii) the number of balls of color k assigned to a bin never exceeds the k-
quota of the corresponding dimension.

The bins are chosen greedily: for each ball, the algorithm picks a bin with
the maximum free space (the potential of the corresponding dimension minus
the number of balls already put into it) among those which satisfy conditions
(i) and (ii) above.

Theorem 5. Algorithm 1 correctly calculates the geodetic Radon number of
a given d-dimensional grid G in O(d (log d)1/2) time.

Proof. We prove the correctness of the proposed algorithm in two steps.
First, we show that, if the algorithm fails to find a valid distribution of all

t(r) :=

br/2c∑
k=1

template countr(k)
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balls into the d bins corresponding to the grid’s dimensions, then no such
distribution exists, in which case it is straightforward to conclude that there
are no d ordered partitions of [1, r] satisfying the requirements of Theorem 1,
so G admits no anti-Radon set of size r. Second, we show that, if the algo-
rithm does find such a distribution, then G admits an anti-Radon set of size
r.

Let D be the non-empty collection of all feasible distributions of t(r) col-
ored balls into d bins, that is, distributions that satisfy the aforementioned
conditions (i) and (ii). Let A denote the distribution obtained by the greedy
algorithm, assuming, by contradiction, that A /∈ D. Distribution A is there-
fore incomplete (it was aborted by the algorithm midway through). We label
the balls 1, 2, . . . , b in the order they were considered by the algorithm, and
we (re-)label the colors 1, 2, . . . , c in the same fashion, according to the or-
der in which they are considered by the algorithm. Let Am(j, k) denote the
number of balls colored k placed in the j-th bin according to A among the
first m ≤ b balls distributed by the greedy algorithm. Finally, for a feasible
distribution D ∈ D, let D(j, k) be the number of balls with color k placed in
the j-th bin according to D.

We define m : D → [1, b] as the function

m(D) := min {m : Am(j, k) > D(j, k) for some j ∈ [1, d], k ∈ [1, c]} .

To follow a standard “cut and paste” argument for proving the correctness
of greedy algorithms, we let D∗ ∈ D be chosen so that m(D∗) is maximum.
We call the ball whose label is m(D∗) the pivot ball. Because D∗ is a feasible
distribution and, by hypothesis, A is not, there must exist a bin j′ ∈ [1, d]
and a color k̂ ∈ [1, c] such that the number of balls with color k̂ put into
bin j′ according to A is greater than the number of balls colored k̂ put into
the same bin according to D, that is, Ab(j

′, k̂) > D(j′, k̂). If that was not
true, then A would not have been aborted in line 7 of the algorithm. Now,
since A(j′, k̂) > D∗(j′, k̂) and the number of balls colored k̂ in A is no greater
than the number of such balls in D∗, there must be a bin j′′ 6= j′ such that
A(j′′, k̂) < D∗(j′′, k̂).

We now infer a contradiction by showing that it is possible to obtain a new
feasible distribution D∗∗ that is quite similar to D∗ and satisfies m(D∗∗) >
m(D∗). We consider two cases:

(1) The bin j′ is not full in D∗, that is, the number of balls put into bin j′

by D∗ is less than its potential.
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(2) The bin j′ is full in D∗.

If (1) holds, then it is simple to create a new feasible distribution D∗∗

identical to D∗ except that one ball with color k̂ is moved from bin j′′ to
bin j′. We remark that, by doing so, the k̂-quota of j′ in D∗∗ will not be
exceeded, since the number of balls colored k̂ in bin j′ according to D∗ was
less than that same number according to A, and therefore strictly less than
the maximum allowed.

If (2) holds, then we still want to move one ball with color k̂ from bin j′′

to bin j′. In this case, however, we must create room for it in bin j′, so the
number of balls does not exceed its potential. We now show that it is always
possible to do so, because, in D∗, the number of balls with colors k > k̂ in bin
j′ is strictly greater than the number of those balls in bin j′′. This implies
the existence of a color k̃ such that D∗(j′, k̃) ≥ 1 and D∗(j′′, k̃) is less than
the k̃-quota of j′′, in which case one ball with color k̃ can be moved from
bin j′ to bin j′′ creating the necessary space in bin j′ for the ball colored k̂
migrating from bin j′′.

More formally, we want to show that

c∑
k=k̂+1

D∗(j′, k) >
c∑

k=k̂+1

D∗(j′′, k).

Since bin j′ is full in distribution D∗, we have

potentialr(j
′) =

k̂−1∑
k=1

D∗(j′, k) +D∗(j′, k̂) +
c∑

k=k̂+1

D∗(j′, k).

The j′′-th bin, however, may not be full, and therefore we write

potentialr(j
′′) ≥

k̂−1∑
k=1

D∗(j′′, k) +D∗(j′′, k̂) +
c∑

k=k̂+1

D∗(j′′, k).

For j ∈ [1, d], let f(j) denote the free space in the j-th bin, according
to A, by the time the greedy algorithm considers the placement of the pivot
ball. It is easy to see that

f(j′) = potentialr(j
′)−

k̂−1∑
k=1

D∗(j′, k)−D∗(j′, k̂),

9



since the number of balls in bin j′, immediately before the placement of the
pivot ball, is precisely the number of balls colored k ≤ k̂ in bin j′ according
to the feasible distribution D∗ (distribution A performed by the algorithm
had not deviated from D∗ until that moment).

Similarly,

f(j′′) ≥ potentialr(j
′′)−

k̂−1∑
k=1

D∗(j′′, k)− A(j′′, k̂),

and the inequality is due to the fact that the final number A(j′′, k̂) of balls
colored k̂ in bin j′′ according to A is an upper bound for the number of balls
that would have already been placed by the algorithm in the j′′-th bin before
the pivot ball was considered.

From the fact that the algorithm chose the j′-th bin, not the j′′-th (which
certainly could get one more ball with color k̂ at that point, as happens in
D∗), we know that f(j′) ≥ f(j′′), implying

c∑
k=k̂+1

D∗(j′, k) ≥ D∗(j′′, k̂) +
c∑

k=k̂+1

D∗(j′′, k)− A(j′′, k̂).

Since D∗(j′′, k̂) > A(j′′, k̂), the desired result follows.
Now for the sufficiency. If the algorithm finds a feasible distribution of

balls into bins as described, then there are d ordered partitions of [1, r] as
required by Theorem 1. The idea is that an ordered partition may eliminate
templates 〈R1〉, 〈R2〉, . . . , 〈Rq〉, with R1 ( R2 ( · · · ( Rq, by letting R1

be the first partite set, R2 \ R1 the second partite set, R3 \ R2 the third
partite set, and so on, as illustrated in [1, proof of Lemma 5]. Moreover, the
templates to be assigned to each ordered partition can be chosen by following
the (almost-)perfect matchings admitted by the bipartite graphs with vertex
sets V1 =

(
[1,r]
k

)
and V2 =

(
[1,r]
k+1

)
where u ∈ V1 is adjacent to v ∈ V2 if and

only if u ⊆ v, as in Eckhoff’s original proof for the Radon number of the
Manhattan convexity on Rd [2].

As for the time complexity, each iteration of the outer loop looks for anti-
Radon sets of size r, and its running time is clearly linear in the number
of Radon partition templates that must be eliminated. Since the number
of such partitions for a set of size r is 2r−1 − 1 = O(2r), the overall time
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complexity of the algorithm is

r(d)−1∑
r=2

O(2r) = O(2r(d)).

We can now employ the approximation(
r

b r
2
c

)
≈ 2r

√
r + 1

·
√

2

π
(3)

for the central binomial coefficient [5] to derive r(d) = O(log d), which suffices
to show that the time complexity of the algorithm is bounded from above by
a polynomial in d. To make it more precise, we gather from (2) that(

r(d)− 1⌊
r(d)−1

2

⌋) ≤ 2d, (4)

and we replace r with r(d)− 1 in (3) before we plug it into (4), obtaining

2r(d)−1√
r(d)

≤ d
√

2π + c,

for some positive constant c. We can now write 2r(d)r(d)−1/2 = O(d), and
the overall 2r(d) = O(d (log d)1/2) time complexity follows.

3.1. The Cartesian product of equal-sized paths

A variation of the proposed algorithm can be devised for the situation
where all d dimensions of the grid G have the same size n. First of all, if
n = 2, then the Radon number of G is given directly by 2+blog2(d+1)c; and
if n = 3, then the Radon number is 3+blog2 dc. These results appeared in [1].
If n ≥ 4, then, to find out whether the input grid admits an anti-Radon set
of size r, the balls-into-bins phase of Algorithm 1 will simply put the first
ball into the first bin, the second ball into the second bin, and so on up to
the d-th bin. Then the (d + 1)-th ball will be put into the first bin again,
the (d + 2)-th ball into the second been etc., provided the potential (as per
Observation 2) and the k-quotas (as per Observation 4) of each dimension are
respected. But now a simple calculation shall answer whether this process
would succeed in distributing all balls, and it does not have to be run at all.
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With respect to the potentials, the total number of balls 2r−1 − 1 must not
exceed d · (min{n, r} − 1); and, with respect to the k-quotas, the number(

r
br/2c

)
of Radon partition templates of size br/2c must not exceed 2d. It is

a simple exercise to check that these two conditions are also sufficient. The
time complexity of the algorithm is thus O(r) = O(log d).1

4. Final considerations

The concluding section of [1] poses the question of whether the simple
structure of d-dimensional grids can be exploited to allow for the efficient
determination of its Radon number. This paper shows it can be done not
only in polynomial time, but in near-linear time for arbitrary grids, and even
in sub-linear time for those special grids that are the Cartesian products of
paths of equal size. After implementing the proposed algorithm, we were
able to replicate the complete results up to the ninth dimension given in [1]
in a matter of milliseconds.2

A question that remains open is whether the Radon number can also be
determined in polynomial time for (induced) subgraphs of grids, not only in
the geodetic convexity but in other types of graph convexities as well.

References
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