
Monkey Hash Map: a highly performant

thread-safe map without locks

Judismar Arpini Junior 1,∗ Vińıcius Gusmão Pereira de Sá 1

1 Universidade Federal do Rio de Janeiro

Keywords: concurrent data structures, hashing, wait-free

Hash tables are arguably the most powerful data structures ever known.
A shared data structure is lock-free if infinitely often some thread completes
its task within a finite number of steps. A shared data structure is wait-free
if each thread completes its execution within a finite number of steps.

We exploit multiple-choice hashing to create a high-performance, wait-
free hashing scheme with O(1) worst-case time for lookup, getValue, insert,
update and remove operations, a hash table that provides thread-safety with-
out requiring any kind of thread synchronization. In short, our monkey
hashing scheme consists of a single hash table and a family of k ≥ 1 hash
functions, meaning multiple alternative locations for each key in the same
table. Unlike what happens in the well-known cuckoo hashing, elements will
never be evicted from where they first landed, so new keys being inserted
must always find an unoccupied spot to call their own. The actual counts
of hash functions in use are kept track of, making it possible that lookups
of absent keys fail before the entire family of hash functions has been ex-
hausted. Dynamic memory allocation—and its inherent pauses, e.g. garbage
collection—is avoided via a key-value object pool, and thread-safe is attained
via (i) pre-allocation of the underlying array, meaning no rehashing will ever
take place, and (ii) the fact that no collision-handling lists are called for, by
design.

The proposed scheme works particularly well in scenarios with a sin-
gle writer and multiple reader threads, dramatically outperforming popu-
lar solutions such as ConcurrentHashMap (Java) and Intel TBB concur-
rent hash map (C++) in heavily concurrent test scenarios. The prices to
pay are (i) eventual consistency, which is dealt with well in numerous con-
current settings, and (ii) a non-zero probability that an insertion might fail,
which can be made small enough, though, to suit all imaginable applications.


