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Abstract

A homogeneous set is a non-trivial module of a graph, i.e. a non-
empty, non-unitary, proper vertex subset such that all its elements
present the same outer neighborhood. Given two graphs G1(V,E1)
and G2(V,E2), the Homogeneous Set Sandwich Problem (HSSP) asks
whether there exists a graph GS(V,ES), E1 ⊆ ES ⊆ E2, which has a
homogeneous set. This paper presents an algorithm that uses the con-
cept of bias graph [14] to solve the problem in O(nmin{|E1|, |E2|} log n)
time, thus outperforming the other known HSSP deterministic algo-
rithms for inputs where max{|E1|, |E2|} = Ω(n log n).

1 Introduction

A graph GS(V,ES) is said to be a sandwich graph of graphs G1(V,E1),
G2(V,E2) if and only if E1 ⊆ ES ⊆ E2. A sandwich problem for property
Π asks whether there exists a sandwich graph (of a given pair of graphs)
which has the desired property Π [8]. Graph sandwich problems were first
defined in the context of Computational Biology and have arisen, ever since,
as natural generalizations of recognition problems [3, 8, 9, 11].

A homogeneous set H for a graph G(V,E) is a subset of V such that
1 < |H| < |V | and for all v ∈ V \ H, either (v, h) ∈ E for all h ∈ H or
(v, h) /∈ E for all h ∈ H. The importance of homogeneous sets for graph
decomposition is well known, specially in the perfect graphs field [12].

Given two graphs G1(V,E1), G2(V,E2), with E1 ⊆ E2, the Homoge-
neous Set Sandwich Problem (HSSP) asks whether there is a sandwich graph
GS(V,ES) of (G1, G2) which contains a homogeneous set. If so, such a ho-
mogeneous set is called a sandwich homogeneous set (SHS) of (G1, G2).
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Sandwich versions for a number of other polynomially recognizable prob-
lems proved to be NP-complete [3, 5, 8, 9, 11, 16]. The HSSP, which be-
longs to the seemingly small subset of polynomial sandwich problems, has
attracted attention [1, 4, 10, 14] as a challenging problem, since its known
algorithms are considerably less efficient than the existing linear time algo-
rithms to find homogeneous sets in a single graph [2, 13].

Throughout the paper, we denote the number of input vertices by n, the
number of edges in G1 (the so-called mandatory edges) by m1 and the num-
ber of edges not in G2 (or forbidden edges) by m2. The values min{m1,m2}
and max{m1,m2} are represented by m and M , respectively. Also, we as-
sume m = Ω(n), since a lesser number of either mandatory or forbidden
edges disconnects G1 or G2 and the problem is trivial. Non-directed edges
between vertices a and b are denoted by (a, b), whereas directed edges from
a to b are written (a→ b). A sink is a subgraph with no outgoing edges.

The first polynomial-time algorithm for the HSSP was presented by Ce-
rioli et al. [1], fixing the problem’s time complexity at O(n4). A few years
later, Tang et al. introduced the concept of bias graph as a tool to solve
the HSSP efficiently [14]. A series of new algorithms with continuously im-
proving complexities have been proposed [4, 7], culminating in the current
O(min{n3 log m

n ,mM}) upper bound. Additionally, randomized approaches
have also been proposed in the form of Monte Carlo [4] and Las Vegas [7]
algorithms, both O(n3). All those previously known HSSP algorithms were
based on some variation of a procedure called bias envelopment [1, 4, 6, 7].
This paper presents an O(nm log n) algorithm which does not employ any
kind of bias envelopment calls but is totally based on Tang et al.’s bias
graph idea instead—and which turns to be the fastest HSSP determinis-
tic algorithm known to date for most instances. (There is a small range
of inputs—namely, those where M = O(n log n)—for which the Quick Fill
algorithm given in [7] remains the fastest.)

In Section 2, we recall Tang et al.’s resourceful bias graph. Section 3
shows the proposed algorithm with its correctness proof and complexity
analysis. Finally, Section 4 contains our concluding remarks.

2 Bias Graph

A bias vertex of a set H ⊂ V is a vertex b ∈ V \ H such that, for some
vi, vj ∈ H, there hold (b, vi) ∈ E1 and (b, vj) /∈ E2. The set B(H) comprising
all bias vertices of H defines the bias set of H [14].

Theorem 1. [1] The set H ⊂ V, |H| ≥ 2, is a sandwich homogeneous set
of (G1, G2) if and only if its bias set B(H) is the empty set.

Due to Theorem 1, the search for a SHS becomes the search for a proper
subset H of V with |H| ≥ 2 and B(H) = ∅. Clearly, if b is a bias vertex of
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set H, then b is also a bias vertex of every set H ′ containing H such that
b /∈ H ′, which means that any set H ′ containing H might possibly be a SHS
only if H ′ also contains B(H).

The bias graph of G1(V,E1), G2(V,E2), with node set VB = {[x, y] | x, y ∈
V, x 6= y} representing all distinct vertex pairs of the problem’s instance.
These nodes are interlinked so to represent their pairwise bias relationships,
i.e. there are two outgoing edges from node [x, y] to nodes [x, b] and [y, b]
in GB if and only if vertex b is a bias vertex of {x, y} ⊂ V . Notice that
[x, y] = [y, x].

We will write L(X) to designate the subset of vertices v ∈ V which
appear in the label of some node in subgraph X ⊆ GB, referring to it as
the labeling set of X and to its elements as X’s labeling vertices. In other
words, L(X) = {v | [v, z] ∈ X, for some z}. A subgraph X ⊆ GB is said to
be pair-closed if and only if x, y ∈ L(X) implies [x, y] ∈ X.

Tang et al.’s algorithm starts by putting together the instance’s bias
graph GB(VB, EB). Then, it locates an end strongly-connected component
(ESCC) S ⊂ GB and, in case L(S) 6= V , it returns yes and L(S) as a SHS.

Notwithstanding the fact that (G1, G2) will indeed present no SHSs if
GB has no ESCCs, the assumption that every proper ESCC of GB maps to
a SHS is not sound. Indeed, an ESCC S might not contain all pairs formed
by its labeling vertices, i.e. there might exist a missing pair {x, y} ⊂ L(S)
such that [x, y] ∈ GB \ S. In case the pair {x, y} presents a bias vertex b
that is not contained in L(S), b will also be a bias vertex of L(S) ⊃ {x, y},
therefore L(S) will fail to be a SHS—despite being S a proper ESCC. This
reasoning brought about Theorem 2 transcribed below:

Theorem 2. [7] A set H ⊂ V , |H| ≥ 2, is a SHS of (G1, G2) if and only
if it is the labeling set of a pair-closed sink in that instance’s bias graph.

Supported by Theorem 2, we employ Tang et al.’s bias graph as the
kernel of an efficient HSSP algorithm.

3 The Pair Completion algorithm

Theorem 2 suggests that a pair-closed sink search strategy is performed. The
algorithm we propose, which we call the Pair Completion algorithm (PC,
for short), starts by building the bias graph GB. Then, as the beginning
point of a pair-closed sink search strategy, it locates GB’s ESCCs. (If no
proper ESCC exists, then the algorithm can safely stop with a no answer,
since every sink is either itself an ESCC or properly contains an ESCC).

As a preparatory measure, the auxiliary routine Locate Reachable Sinks
(LRS), given in Figure 1, gathers information about the set of ESCCs that
can be reached by each node. Its details will be focused on later.
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Locate Reachable Sinks (GB(VB, EB))
1. for each vertex [x, y] ∈ VB do
1.1. sink(x, y)← undefined
2. for each ESCC S do
2.1. let [u, v] be some vertex in S
2.2. sink(u, v)← S
2.3. let R be a list containing initially only [u, v]
2.4. while R is not empty do
2.4.1. let [c, d] be the first element in R
2.4.2. for each edge ([x, y]→ [c, d]) ∈ EB do
2.4.2.1. if sink(x, y) = undefined then
2.4.2.1.1. sink(x, y)← S; put [x, y] into R
2.4.2.2. else if sink(x, y) 6= S and sink(x, y) 6= several then
2.4.2.2.1. sink(x, y)← several ; put [x, y] into R
2.4.3. remove [c, d] from R

Figure 1: The Locate Reachable Sinks routine

The algorithm proceeds by picking one of the ESCCs, say S, and sub-
mitting it to the Perform Pair Completion routine given in Figure 2. (We
will refer to it simply as pair completion, from now on.)

The pair completion routine collects the labeling vertices of S in the set
L (regarded as a SHS candidate). Then, for each pair {x, y} in L, it checks
whether [x, y] reaches, in GB, an ESCC other than S. If this is the case (not
only S is reached by [x, y]), then one edge is added from S (i.e. from any of its
vertices) to [x, y] and S no longer constitutes an ESCC, hence the algorithm
shall drop S and run the pair completion anew on a different ESCC of GB.
If, on the other hand, the only ESCC reached by [x, y] is S itself, then no
edges are added—and the algorithm just puts into L all labeling vertices of
the out-neighbors of [x, y] in GB (in case they are not in L yet). If all pairs
of vertices in L are investigated without the addition of any new edge, the
algorithm will have found the pair-closed sink S′ = {[u, v] ∈ VB | u, v ∈ L}
and will therefore stop with a yes answer.

By the time all those former ESCCs have been submitted to pair com-
pletion, and assuming none of them yielded a yes answer, the algorithm is
not yet able to stop, since new ESCCs might have arisen as a result of the
edge additions. Hence, the whole process of locating ESCCs, running the
LRS and performing the pair completion on all ESCCs has to be started
over. (Please refer to Figure 3 for the PC algorithm’s pseudo-code.) The al-
gorithm goes forth with such successive pair completion turns (iterations of
the algorithm’s main loop) until it has successfully found a SHS, answering
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Perform Pair Completion (GB(VB, EB), S)
1. let L be the set {v ∈ V | [u, v] ∈ S—or [v, u] ∈ S—for some u}
2. let P be a list containing all [x, y] ∈ VB such that {x, y} ⊂ L
3. while P is not empty do
3.1. let [x, y] be the first element in P
3.2. if sink(x, y) 6= S then // obtained by the LRS routine
3.2.1. add edge ([u, v]→ [x, y]) to EB, for some [u, v] ∈ S
3.2.2. P ← ∅; L← ∅
3.3. else
3.3.1. for each vertex [z, w] such that ([x, y]→ [z, w]) ∈ EB do
3.3.1.1. if z /∈ L then
3.3.1.1.1. for each element h ∈ L do put [z, h] into P
3.3.1.1.2. L← L ∪ {z}
3.3.1.2. if w /∈ L then
3.3.1.2.1. for each element h ∈ L do put [w, h] into P
3.3.1.2.2. L← L ∪ {w}
3.4. remove [x, y] from P
4. if 1 < |L| < |V | then return yes else return no

Figure 2: The Perform Pair Completion routine

yes, or the current bias graph (the original one plus a number of additional
edges) has become strongly connected, yielding a no answer.

3.1 Proof of correctness / completeness

The soundness of the PC algorithm results from the following Lemmas 3 and
4. (We call extended bias graph the bias graph with any number of extra
edges added by the PC algorithm.)

Lemma 3. If the PC algorithm answers yes, the input instance has a SHS.

Proof. Yes answers always result from successful Perform Pair Completion
runs. But that routine only returns yes if it finds a set L ⊂ V such that, in
some extended bias graph G′B(VB, E

′
B) of (G1, G2), all nodes labeled by two

vertices in L only have out-neighbors whose labeling vertices also belong to
L. Therefore L is the labeling set of a pair-closed sink in G′B. Now, the
nodes of any sink of G′B induce a sink in the original bias set GB(VB, EB)
as well, since E′B ⊇ EB. Thus, by Theorem 2, L is a SHS.

Lemma 4. If the input has a SHS, then the PC algorithm finds one.

Proof. Let us suppose the input instance (G1, G2) has SHS L. By Theorem
2, its bias graph GB(VB, EB) must have a pair-closed sink P whose labeling
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Pair Completion HSSP Algorithm (G1(V,E1), G2(V,E2), H1)
1. find the bias graph GB(VB, EB) of (G1, G2)
2. repeat
2.1. partition GB into its strongly connected components
2.2. find GB’s proper end strongly connected components (ESCC)
2.3. if there is no ESCC then return no
2.4. Locate Reachable Sinks(GB)
2.5. for each ESCC S do
2.5.1. if Perform Pair Completion(GB, S) returns yes then
2.5.1.1. return yes // else an edge will have been added to GB

Figure 3: The Pair Completion algorithm

set is L(P ) = L. We want to show that the algorithm cannot answer no. In
order to give a no answer, the algorithm must have added enough edges to
strongly connect GB. This means that, in particular, P has to cease being
a sink. Now, every additional edge is such that it links an ESCC S to one
of its missing pairs, i.e. to a node [x, y] /∈ S such that x, y ∈ L(S). Thus,
in order to leave P , the new edge has to link an ESCC S ⊆ P to one of
its missing pairs not in P . This is simply not possible, as P is pair-closed
in GB and remains so in every extended bias graph G′B(VB, E

′
B), since the

extra edges in E′B \ EB cannot change this fact.

3.2 Complexity analysis

The PC algorithm comprises an O(nm) step of building the bias graph [7, 14]
plus some pair completion turns which consist in: (i) partitioning the current
(extended) bias graph into its SCCs and locating the ESCCs among them;
(ii) locating the reachable sinks of all nodes; (iii) visiting the (missing) pairs
of each ESCC until one edge (per ESCC) is added.

Step (i) calls Tarjan’s strongly connected components (SCC) partitioning
method [15], whose time is linear in the number of the digraph’s edges. Since
the bias graph has formerly O(nm) edges [7, 14], it will take O(nm + d(k))
time during the k-th turn, where d(k) is the number of edges added prior to
the start of the k-th turn. By Lemma 5, in [7], the number of ESCCs which
might not be pair-closed is O(m), therefore max{d(k)} is clearly bounded
by O(tm), where t is the maximum possible number of turns. We will soon
show that t is O(log n), yielding an O(nm) time bound for step (i).

The complexity of step (ii) is that of the LRS routine, whose mechanics
is the following: a reachable sink attribute, initially empty, is created for
each node. Then, starting by any one node of each ESCC S, the LRS
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traverses the (extended) bias graph’s edges backwards as if it were running
an ordinary breadth-first search (BFS) on a similar graph with reversed
edges. As each node is visited, its reachable sink attribute is set as either
S, if no other reachable ESCC had yet been set for that node, or several,
if S is the second reachable ESCC to be revealed for that node. It clearly
suffices for the algorithm’s purposes, as we actually only need to know if a
certain ESCC happens to be the only ESCC reached by a node. The time-
saving device here is that the search can be discontinued at nodes previously
marked several, since its ancestors in the bias graph (i.e. descendants in the
BFS tree) will already have been marked several as well.

Figure 4 illustrates a LRS call. The big ellipses labeled A, B and C, at
the bottom, stand for ESCCs of the bias graph at that point. Each node’s
reachable sink attribute appears next to it. Plus signs indicate several.

All edges which leave nodes not marked several have been visited only
once. On the other hand, an edge which leaves a node v marked several
has been visited exactly twice, as further searches would be discontinued at
v. Since all edges are visited a constant number of times, the overall time
complexity of each LRS run is O(|VB|+ |EB|) = O(n2 + nm) = O(nm).

Finally, step (iii) spends a constant time for each node it visits. It is
easy to see that the maximum number of visited nodes per turn sum up
to O(n2) nodes, since nodes toward which no edges were added have been
investigated during at most one pair completion, whereas the nodes which
did receive an extra incoming edge are not more than one per ESCC.

As for the worst-case number of pair completion turns, suppose S(k) =
{Si : i = 1, . . . , s} is the set of ESCCs in the k-th iteration. We know
that, by the end of the k-th iteration, all s former ESCCs Si will have
ceased being an ESCC. We are interested in finding the maximum number
of new ESCCs that might have been formed. Well, if a new ESCC S′ is
formed, it must contain at least one element of S(k), no more a sink now.
This is true because only edges whose origin node is contained inside some
Si have been added, during the k-th turn—therefore no sink can possibly
have been formed containing only vertices which did not belong to any Si.
Nevertheless, we know that the outgoing edge added to former ESCC Sp

during the k-th turn provided it with a path to another sink Sq, q 6= p,
which will only allow the existence of a sink S′ ⊃ Sp if S′ also contains
Sq. Thus, the minimum number of elements of S(k) contained in any newly
formed ESCC is actually two. Since all ESCCs are obviously disjoint, the
number of ESCCs in the (k + 1)-th iteration is at most |S(k)|/2, so that
O(log n) turns will be enough to strongly-connect GB.

The overall time complexity of the Pair Completion algorithm is there-
fore O(log n) ·O(nm) = O(nm log n), showing the algorithm’s sensibility to
the number of edges of G1 and the number of non-edges in G2, which is
certainly appropriate for such a problem that is invariant under taking the
complements of the input graphs.
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Figure 4: Result of a call to Locate Reachable Sinks

4 Conclusion

The algorithm proposed in this paper, which owes substantially to Tang
et al.’s past efforts, establishes a new O(nm log n) upper bound for the
HSSP. Actually, its performance is likely to be even better than that of the
aforementioned randomized algorithms for instances with a limited number
of mandatory or forbidden edges—namely, those where m = O(n2/ log n).

We believe this particular problem’s research history reveals the usage
of a number of arousing algorithmic tools, wherefrom plenty of interesting
didactic resources might be harvested.
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