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Abstract

We study the graphs G for which the hull number h(G) and the geodetic number g(G)
with respect to P3-convexity coincide. These two parameters correspond to the minimum
cardinality of a set U of vertices of G such that the simple expansion process which
iteratively adds to U all vertices outside of U having two neighbors in U produces the whole
vertex set of G either eventually or after one iteration, respectively. We establish numerous
structural properties of the graphs G with h(G) = g(G), allowing for the constructive
characterization as well as the efficient recognition of all such graphs that are triangle-
free. Furthermore, we characterize—in terms of forbidden induced subgraphs—the graphs
G that satisfy h(G′) = g(G′) for every induced subgraph G′ of G.
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1 Introduction

As one of the most elementary models of spreading a property within a network—like sharing
an idea or disseminating a virus—one can consider a graph G, a set U of vertices of G that
initially possess the property, and an iterative process whereby new vertices u enter U whenever
sufficiently many neighbors of u are already in U . The simplest choice for “sufficiently many”
that results in interesting effects is two. This choice leads to the irreversible 2-threshold processes
considered by Dreyer and Roberts [8]. Similar models were studied in various contexts such
as statistical physics, distributed computing, social networks, and marketing, under different
names such as influence dynamics, bootstrap percolation, local majority processes, irreversible
dynamic monopolies, catastrophic fault patterns, and many others [1, 2, 4, 8, 11,13–15].

From the point of view of discrete convexity, the above spreading process corresponds to
the formation of the convex hull of the set U of vertices of G with respect to the so-called
P3-convexity in G. A set C of vertices of G is P3-convex if no vertex of G outside of C has two
neighbors in C, and the P3-convex hull of a set U of vertices of G is the smallest P3-convex
set containing U . A P3-hull set of G is a set of vertices whose P3-convex hull equals the whole
vertex set of G, and the minimum cardinality of a P3-hull set of G is the P3-hull number h(G)
of G. Closely related to the notion of hull sets and the hull number of a graph are geodetic
sets and the geodetic number. A P3-geodetic set of a graph G is a set U of vertices of G such
that every vertex of G outside of U has two neighbors in U . The minimum cardinality of a
P3-geodetic set of G is the P3-geodetic number g(G) of G.

Various types of graph convexities have been considered in the literature, and the definitions
of hull sets and geodetic sets change accordingly. For the special case of the P3-convexity, the P3-
geodetic number coincides with the well-studied 2-domination number [10]. The P3-convexity
was first considered for tournaments [9, 12, 16], and by now many aspects of the P3-convexity
in graphs have been studied, such as partition problems [5] and versions of Carathéodory’s
theorem [3] and Radon’s theorem [7].

In view of the iterative spreading process considered above, a hull set eventually distributes
the property throughout the entire network, whereas a geodetic set spreads the property within
the entire network in exactly one iteration. Hence the hull number h(G) of some graph G is the
minimum size of an initial set needed to spread the property throughout G without a limit on
the number of iterations, while the geodetic number g(G) is the minimum size of an initial set
needed to spread the property throughout G in one single iteration. Intuitively, there should be
a tradeoff between the speed of the spreading process and the size of the initial set—the faster
one wants the process to terminate, the larger the initial set should have to be. This intuition
is reflected by the inequality

h(G) ≤ g(G), (1)

which holds for every graph G. A formal proof of (1) follows immediately from the trivial
observation that every geodetic set is a hull set.

While a tradeoff is intuitively plausible, it does not necessarily occur for all network topolo-
gies G. On one hand, spreading the property immediately instead of eventually requires at
most g(G) − h(G) more vertices in the initial set. Therefore, if h(G) and g(G) are close to-
gether, then the speedup of the spreading process comes at a small additional price as measured
in the size of the initial set. On the other hand, one may be interested in reducing as much
as possible the number of “initially infected” elements, yet allowing for the dissemination to

2



eventually reach the entire network, whereupon g(G) − h(G) bounds the maximum possible
such reduction. In order to understand this time versus size of the initial set tradeoff, it is of
interest to study graphs G for which h(G) and g(G) are close together. Since both parameters
are computationally hard in general and efficient algorithms are only known for quite restricted
graph classes [6,10], it is most likely algorithmically hard to decide for a given graph G whether
h(G) and g(G) are close together.

In the present paper we study the extreme case of graphs G where h(G) and g(G) coincide,
that is, (1) holds with equality, and no speedup—or reduction in the size of the initial set—is
possible. After summarizing useful notation and terminology, we collect numerous structural
properties of such graphs in Section 2. Based on these properties, we construct a large subclass
of those graphs in Section 3, comprising all such graphs that are triangle-free. In Section 4 we
derive an efficient algorithm for the recognition of the triangle-free graphs that satisfy (1) with
equality. In Section 5 we give a complete characterization of the class of all graphs G for which
(1) holds with equality for every induced subgraph of G. Finally, we conclude with some open
problems in Section 6.

1.1 Notation and terminology

We consider finite and simple graphs and digraphs, and use standard terminology. For a graph
G, the vertex set is denoted V (G) and the edge set is denoted E(G). For a vertex u of a graph
G, the neighborhood of u in G is denoted NG(u) and the degree of u in G is denoted dG(u).
A set C of vertices of G is P3-convex exactly if no vertex of G outside C has two neighbors in
C. The P3-convexity of G is the collection C(G) of all P3-convex sets. Since we only consider
P3-convexity, we will omit the prefix “P3-” from now on.

For a set U of vertices of G, let the interval IG(U) of U in G be the set U ∪{u ∈ V (G)\U |
|NG(u) ∩ U | ≥ 2}, and let HG(U) denote the convex hull of U in G, that is, HG(U) is the
unique smallest set in C(G) containing U . Within this notation, U is a geodetic set of G if
IG(U) = V (G), and U is a hull set of G if HG(U) = V (G). The inequality (1) follows from the
immediate observation that IG(U) ⊆ HG(U) for every set U .

If U is a hull set of G, then iteratively adding vertices to U that have two neighbors
in U results in V (G). This defines a linear order u1, . . . , un of the vertices of G such that
U = {u1, . . . , u|U |} and for every i with |U | + 1 ≤ i ≤ n, the vertex ui has two neighbors in
{u1, . . . , ui−1}. This implies that U is a hull set of G if and only if there is an acyclic orientation
D of a spanning subgraph of G such that the in-degree d−D(u) is 0 for every vertex u in U and
2 for every vertex u in V (G) \ U . We call such a D a hull proof for U in G.

Throughout the paper we will use the term component to denote a connected component.
Since the hull number and the geodetic number are both additive with respect to the compo-
nents of G, we consider the set of graphs

H = {G | G is a connected graph with h(G) = g(G)}.

2 Structural properties of graphs in H
We collect some structural properties of the graphs in H. Throughout this section, let G be
a fixed graph in H. Let W be a geodetic set of G of minimum order and let B = V (G) \W .
By definition, every vertex in B has at least two neighbors in W . Therefore, G has a spanning
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bipartite subgraph G0 with bipartition V (G0) = W ∪B such that every vertex in B has degree
exactly 2 in G0. Let E1 denote the set of edges in E(G) \ E(G0) between vertices in the
same component of G0 and let E2 denote the set of edges in E(G) \ E(G0) between vertices
in distinct components of G0. Note that, by construction, W is a geodetic set of G0. Since
|W | = g(G) = h(G) ≤ h(G0) ≤ g(G0) ≤ |W |, we obtain h(G0) = g(G0) = |W |, that is, G0 has
no geodetic set and no hull set of order less than |W |. Thus, if C is a component of G0, then
W ∩ V (C) is a minimum geodetic set of C as well as a minimum hull set of C.

Lemma 1 Let C be a component of G0.

(i) No two vertices in C are incident with edges in E2.

(ii) If some vertex u in C is incident with at least two edges in E2, then u belongs to B and
u is a cut vertex of C.

Proof (i) We consider different cases. If two vertices w and w′ in V (C) ∩W are incident with
edges in E2, then let P : w1b1 . . . wl−1bl−1wl be a shortest path in C between w = w1 and
w′ = wl. The set (W \ {w1, . . . , wl})∪{b1, . . . , bl−1} is a hull set of G, which is a contradiction.

If a vertex w in V (C) ∩W and a vertex b in V (C) ∩B are incident with edges in E2, then
let P : w1b1 . . . wlbl be a shortest path in C between w = w1 and b = bl. Note that b has a
neighbor in G0 that does not belong to P . Therefore, the set (W \ {w1, . . . , wl})∪{b1, . . . , bl−1}
is a hull set of G, which is a contradiction.

Finally, if two vertices b and b′ in V (C) ∩ B are incident with edges in E2, then let P :
b1w1 . . . bl−1wl−1bl be a shortest path in C between b = b1 and b′ = bl. Note that b and b′

both have neighbors in G0 that do not belong to P . Therefore, the set (W \ {w1, . . . , wl−1}) ∪
{b2, . . . , bl−1} is a hull set of G, which is a contradiction.

(ii) If a vertex w in V (C)∩W is incident with at least two edges in E2, then W \ {w} is a hull
set of G, which is a contradiction.

If a vertex b in V (C) ∩ B that is not a cut vertex of C is incident with at least two edges
in E2, then let P : w1b1 . . . wl−1bl−1wl be a path in C avoiding b between the two neighbors
w1 and wl of b in G0. The set (W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a hull set of G, which is a
contradiction. 2

Lemma 2 If G0 is not connected, no two vertices in W that belong to the same component of
G0 are adjacent.

Proof: For contradiction, we assume that ww′ is an edge of G where w and w′ are vertices in
W that belong to the same component C of G0. Since G is connected, there is an edge uv in
E2 with u ∈ V (C) and v ∈ V (G) \ V (C).

First, we assume that u belongs to W . Let P : w1b1 . . . wl−1bl−1wl be a shortest path
in C between u = w1 and a vertex wl in {w,w′}. Note that l = 1 is possible. The set
(W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a hull set of G, which is a contradiction.

Next, we assume that u belongs to B. Let P : b1w1 . . . blwl be a shortest path in C between
u = b1 and a vertex wl in {w,w′}. Note that l = 1 is possible. Furthermore, note that b1 has
a neighbor in G0 that does not belong to P . The set (W \ {w1, . . . , wl}) ∪ {b2, . . . , bl} is a hull
set of G, which is a contradiction. 2
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Lemma 3 If G0 is not connected and C is a component of G0, then there are no two vertices
w in V (C) ∩W and b in V (C) ∩B such that wb ∈ E1.

Proof: For contradiction, we assume that there is an edge wb ∈ E1 with w in W and b in B.
Since G is connected, there is an edge uv in E2 with u ∈ V (C) and v ∈ V (G) \ V (C).

First, we assume that u ∈ W . Let P be a shortest path in C between u and a vertex u′ in
{w, b}. If u′ = w, then let P : w1b1 . . . bl−1wl where u = w1 and w = wl. Note that l = 1 is
possible. In this case the set (W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a hull set of G, which is a
contradiction. If u′ = b, then let P : w1b1 . . . bl−1wlbl where u = w1 and b = bl. Note that l = 1
is possible. Furthermore, note that b has a neighbor in G0 that does not belong to P . In this
case, the set (W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a hull set of G, which is a contradiction.

Next, we assume that u = b. Let P : b1w1 . . . blwl be a shortest path in C between b = b1 and
w = wl. Note that the edge bw does not belong to C, hence l ≥ 2. Furthermore, note that b has
a neighbor in G0 that does not belong to P . In this case, the set (W \ {w1, . . . , wl})∪{b2, . . . , bl}
is a hull set of G, which is a contradiction.

Finally, we assume that u ∈ B \ {b}. Let P be a shortest path in C between u and a vertex
u′ in {w, b}. If u′ = w, then let P : b1w1 . . . blwl, where u = b1 and w = wl. Note that l = 1 is
possible. Furthermore, note that w is the unique neighbor of b in P , and that u has a neighbor
in G0 that does not belong to P . In this case, the set (W \ {w1, . . . , wl})∪ {b2, . . . , bl} is a hull
set of G, which is a contradiction. If u′ = b, then let P : b1w1 . . . wl−1bl, where u = b1 and
b = bl. In this case, the set (W \ {w1, . . . , wl−1}) ∪ {b2, . . . , bl−1} is a hull set of G, which is a
contradiction. 2

Lemma 4 Let G0 be disconnected and let b and b′ be two vertices in B that belong to the same
component C of G0 satisfying bb′ ∈ E1.

(i) Neither b nor b′ is incident with an edge in E2.

(ii) If some vertex w in V (C) ∩W is incident with an edge in E2 and P : w1b1 . . . wlbl is a
path in C between w = w1 and a vertex bl in {b, b′}, then wl is adjacent to both b and b′,
and C contains no path between b and b′ that does not contain wl.

(iii) If some vertex b′′ in (V (C)∩B)\{b, b′} is incident with an edge in E2 and P : b1w1 . . . wl−1bl
is a path in C between b′′ = b1 and a vertex bl in {b, b′}, then wl−1 is adjacent to both b
and b′ and C contains no path between b and b′ that does not contain wl−1.

Proof: (i) For contradiction, we assume that b′ is incident with an edge in E2. If b and b′ have
a common neighbor w in C, then, since bb′ ∈ E1, the set W \ {w} is a hull set of G, which is a
contradiction. Hence we may assume that b and b′ do not have a common neighbor in C. Let
w1 be a neighbor of b in G0 and wl a neighbor of b′ in G0 chosen in such a way that the path
P : w1b1 . . . wl−1bl−1wl in C is shortest possible. Note that b and b′ both have neighbors in G0

that do not belong to P . Therefore and since bb′ ∈ E1, the set (W \ {w1, . . . , wl})∪{b1, . . . , bl−1}
is a hull set of G, which is a contradiction.

(ii) Let w and P : w1b1 . . . wlbl be as specified.
First, we assume, for contradiction, that wl is not adjacent to both b and b′. In this case,

(W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a hull set of G, which is a contradiction. Hence wl is
adjacent to both b and b′ and we may assume that bl = b.
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Next, we assume, for contradiction, that C contains a path Q : b′1w
′
1 . . . w

′
k−1b

′
k between

b = b′1 and b′ = b′k that does not contain wl. If k = 2, then w′1 is a common neighbor of
b and b′ in W distinct from wl, and (W \ {w1, . . . , wl, w

′
1}) ∪ {b1, . . . , bl} is a hull set of G,

which is a contradiction. Hence k ≥ 3, which implies that wl is the only common neighbor
of b and b′ in C. If the two paths P and Q intersect in a vertex in W , say wi = w′j, then
w1b1 . . . bi−1wib

′
j+1w

′
j+1 . . . w

′
k−1b

′
k is a path in C between w and a vertex in {b, b′} such that w′k−1

is not adjacent to both b and b′, which leads to a contradiction as above. Hence we may assume
that P and Q do not intersect in a vertex in W . Now

(
W \ ({w1, . . . , wl} ∪ {w′1, . . . , w′k−1})

)
∪

{b1, . . . , bl} ∪ {b′2, . . . , b′k−1} is a hull set of G, which is a contradiction.

(iii) Let b′′ and P : b1w1 . . . wl−1bl be as specified.
If b1 is adjacent to some vertex wi of P that is distinct from w1, then we can shorten P to

b1wibi+1 . . . wl−1bl without changing the neighbor wl−1 of bl on P . Hence we may assume that
b′′ has a neighbor in G0 that does not belong to P .

First, we assume, for contradiction, that wl−1 is not adjacent to both b and b′. In this case,
the set (W \ {w1, . . . , wl−1}) ∪ {b2, . . . , bl−1} is a hull set of G, which is a contradiction. Hence
wl−1 is adjacent to both b and b′ and we may assume that bl = b.

Next, we assume, for contradiction, that C contains a path Q : b′1w
′
1 . . . w

′
k−1b

′
k between

b = b′1 and b′ = b′k that does not contain wl−1. If k = 2, then w′1 is a common neighbor of
b and b′ in W distinct from wl and (W \ {w1, . . . , wl−1, w

′
1}) ∪ {b2, . . . , bl} is a hull set of G,

which is a contradiction. Hence k ≥ 3, which implies that wl−1 is the only common neighbor
of b and b′ in C. If the two paths P and Q intersect in a vertex in W , then we obtain a similar
contradiction as in (ii). Hence we may assume that P and Q do not intersect in a vertex in W .
Now

(
W \ ({w1, . . . , wl−1} ∪ {w′1, . . . , w′k−1})

)
∪ {b2, . . . , bl} ∪ {b′2, . . . , b′k−1} is a hull set of G,

which is a contradiction. 2

Lemma 5 If C is a component of G0, then there are no two vertices w and w′ of C that belong
to W and two edges e and e′ that belong to E(G) \E(G0) such that w is incident with e, w′ is
incident with e′, and e′ is distinct from ww′.

Proof: For contradiction, we assume that w, w′, e, and e′ are as specified. Let e = wu and
e′ = w′u′. Note that u′ 6= w.

If G0 is disconnected, then Lemma 2 and Lemma 3 imply that u and u′ belong to components
of G0 that are distinct from C, which implies a contradiction to Lemma 1 (i). Hence G0 is
connected.

Let P : w1b1 . . . bl−1wl be a shortest path in C between w = w1 and w′ = wl. If u = w′,
then W \ {w′} is a hull set of G, which is a contradiction. Hence u 6= w′, that is, e is distinct
from ww′. If either uw′ 6∈ E(G0) or u′w 6∈ E(G0), then (W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a
hull set of G, which is a contradiction. Hence uw′, u′w ∈ E(G0), which implies that u and u′

are distinct and belong to B. Now W \ {w′} is a hull set of G, which is a contradiction. 2

Lemma 6 If C is a component of G0, then there are no two edges wb and wb′ that belong to
E(G) \ E(G0) with w ∈ W ∩ V (C) and b, b′ ∈ B ∩ V (C).

Proof: For contradiction, we assume that such edges wb and wb′ are as specified. Now W \{w}
is a hull set of G, which is a contradiction. 2
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Lemma 7 If G0 is connected and G is triangle-free, then there are no two edges ww′ and bb′

in G with w,w′ ∈ W and b, b′ ∈ B.

Proof: For contradiction, we assume that such edges ww′ and bb′ exist. Let P : w1b1 . . . wlbl be
a shortest path in G0 between a vertex w1 in {w,w′} and a vertex bl in {b, b′}. By symmetry,
we may assume that w1 = w and bl = b. Since G is triangle-free, b′ is not adjacent to wl. Now
(W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a hull set of G, which is a contradiction. 2

Lemma 8 If G0 is connected and G is triangle-free, then there are no two edges wb and b′b′′

in G with w ∈ W , b, b′, b′′ ∈ B, and wb ∈ E1.

Proof: For contradiction, we assume that such edges wb and b′b′′ exist.
First, we assume that b = b′. Since G is triangle-free, w is not adjacent to b′′. Let P :

w1b1 . . . wlbl be a shortest path in G0 between w = w1 and a vertex bl in {b, b′′}. Since G is
triangle-free, wl has only one neighbor in {b, b′′}. By the choice of P , the unique vertex in
{b, b′′} \ {bl} has no neighbor in G0 belonging to P . Now (W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is
a hull set of G, which is a contradiction.

Next, we assume that b is distinct from b′ and b′′. Let P be a shortest path in G0 between
a vertex in {w, b} and a vertex in {b′, b′′}. If P is of the form w1b1 . . . wlbl with w1 = w, then
(W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a hull set of G, which is a contradiction. If P is of the
form b1w2 . . . wlbl with b1 = b, then (W \ {w2, . . . , wl})∪ {b2, . . . , bl−1} is a hull set of G, which
is a contradiction. 2

Lemma 9 If G0 is connected and G is triangle-free, then there are no two distinct edges bb′

and b′′b′′′ in G with b, b′, b′′, b′′′ ∈ B.

Proof: For contradiction, we assume that such edges bb′ and b′′b′′′ exist.
First, we assume that all four vertices b, b′, b′′, and b′′′ are distinct. If P : b1w1 . . . wl−1bl

is a shortest path in G0 between a vertex b1 in {b, b′} and a vertex bl in {b′′, b′′′}, then
(W \ {w1, . . . , wl−1}) ∪ {b2, . . . , bl−1} is a hull set of G, which is a contradiction.

Next we assume that b′ = b′′′, that is, the two edges bb′ and b′′b′′′ are incident. Let P :
b1w1 . . . wl−1bl be a shortest path in G0 between b = b1 and b′′ = bl. Since G is triangle-
free, b′ is not adjacent to w1 or wl−1. Regardless of whether b′ belongs to P or not, the set
(W \ {w1, . . . , wl−1}) ∪ {b2, . . . , bl−1} is a hull set of G, which is a contradiction. 2

3 Constructing all triangle-free graphs in H
Let G0 denote the set of all bipartite graphs G0 with a fixed bipartition V (G0) = B ∪W such
that every vertex in B has degree exactly 2.

We consider four distinct operations that can be applied to a graph G0 from G0.

• Operation O1

Add one arbitrary edge to G0.

• Operation O′1
Select two vertices w1 and w2 from W and arbitrarily add new edges between vertices in
{w1, w2} ∪ (NG0(w1) ∩NG0(w2)) .
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• Operation O2

Add one arbitrary edge between vertices in distinct components of G0.

• Operation O3

Choose a non-empty subset X of B such that all vertices in X are cut vertices of G0

and no two vertices in X lie in the same component of G0. Add arbitrary edges between
vertices in X so that X induces a connected subgraph of the resulting graph. For every
component C of G0 that does not contain a vertex from X, add one arbitrary edge between
a vertex in C and a vertex in X.

Let G1 denote the set of graphs that are obtained by applying operation O1 once to a connected
graph G0 in G0. Let G ′1 denote the set of graphs that are obtained by applying operation O′1
once to a connected graph G0 in G0. Let G2 denote the set of graphs that are obtained by
applying operation O2 once to a graph G0 in G0 that has exactly two components. Let G3
denote the set of graphs that are obtained by applying operation O3 once to a graph G0 in G0
that has at least three components. Note that O3 can only be applied if G0 has at least one
cut vertex that belongs to B.

Finally, let

G = G1 ∪ G ′1 ∪ G2 ∪ G3. (2)

Since operation O′1 allows that no edges are added, the set G ′1 contains all connected graphs
in G0.

Theorem 10 G ⊆ H.

Proof: Let G be a graph in G that is obtained by applying some operation to a graph G0 in G0.
Let V (G0) = B ∪W be the fixed bipartition of G0. Since every vertex in B has two neighbors
in W , the partite set W is a geodetic set of G and therefore g(G) ≤ |W |. By (1), it suffices to
show that h(G) ≥ |W | to conclude the proof. For contradiction, we assume that U is a hull set
of G with |U | < |W |. Let D be a hull proof for U in G.

The proof naturally splits into four cases.

Case 1 G ∈ G1.

Let W1 = W \ U and B0 = B ∩ U . Note that, by the above assumption, |W1| > |B0| ≥ 0.
We claim that there is at most one vertex w in W1 for which the set NG0(w) contains exactly

one vertex of B0 and that for every other vertex w′ in W1, the set NG0(w
′) contains at least

two vertices of B0. In other words, there is a vertex w∗ in W1 such that

|NG0(w) ∩B0| ≥
{

1, if w = w∗,
2, if w ∈ W1 \ {w∗}.

(3)

Let w be a vertex in W1. Since |W1| > |B0|, we may assume that NG0(w) contains at most one
vertex from B0. Let x and y denote the two in-neighbors of w in D. Let e denote the edge
added by operation O1.

If x belongs to W , then e is the edge xw. Hence y ∈ B and dG(y) = 2. Therefore y ∈ B0,
that is, y ∈ NG0(w)∩B0. Furthermore, for every other vertex w′ in W1\{w}, its two in-neighbors
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x′ and y′ in D both belong to B and are not incident with e. Hence dG(x′) = dG(y′) = 2 and
therefore x′, y′ ∈ B0, that is, x′, y′ ∈ NG0(w) ∩ B0. Thus the claim holds. Hence, we may
assume that x and y both belong to B.

If e is the edge wx, then we obtain as above that y ∈ NG0(w)∩B0. Hence x does not belong
to B0. This implies that the two edges of G0 incident with x are both oriented towards x in
D. For every other vertex w′ in W1 \ {w}, it follows that its two in-neighbors x′ and y′ in D
satisfy x′, y′ ∈ NG0(w) ∩B0. Hence, we may assume that e is neither wx nor wy.

Since NG0(w) contains at most one element from B0, we may assume that x ∈ B1. Since
x 6∈ U , x has two in-neighbors in D. This implies that the degree of x in G is at least 3.
Hence e is incident with x and oriented towards x in D. This implies that y ∈ NG0(w) ∩ B0.
Furthermore, for every other vertex w′ in W1 \ {w}, its two in-neighbors x′ and y′ in D both
belong to B, and, if they are incident with e, then e is not oriented towards them in D. This
implies that x′ and y′ belong to B0, that is, x′, y′ ∈ NG0(w

′) ∩B0.
Altogether, the existence of a vertex w∗ in W1 with (3) follows. If m denotes the number

of edges in G0 between W1 and B0, then (3) implies m ≥ 2(|W1| − 1) + 1. Furthermore, every
vertex in B has degree 2 in G0 and therefore m ≤ 2|B0|. Thus, 2|W1| − 1 ≤ 2|B0|. Since both
cardinalities are integers, we obtain |W1| ≤ |B0|, hence

|U | = |W ∩ U |+ |B ∩ U | ≥ |W ∩ U |+ |W \ U | = |W |,

which is a contradiction.

Case 2 G ∈ G ′1.

Let w1 and w2 denote the two vertices from W selected by operation O′1 and let E denote the
set of new edges added by operation O′1 between vertices in {w1, w2} ∪ (NG0(w1) ∩NG0(w2)) .
Let N = NG0(w1) ∩NG0(w2). Let W1 = W \ U and B0 = B ∩ U .

Again we claim that there is a vertex w∗ in W1 such that (3) holds. Let w be a vertex in
W1. As before we may assume that NG0(w) contains at most one vertex from B0. Let x and y
denote the two in-neighbors of w in D.

First, we assume that x belongs to W . This implies that, by symmetry, we may assume
that w is w1, x is w2, and the edge xw1 belongs to E and is oriented towards w1 in D. Since D
is acyclic, the set N contains a vertex z such that no edge in E is oriented towards z in D, that
is, z is a source of the digraph induced by N in D. This implies that z cannot have in-degree 2
in D, so z ∈ NG0(w)∩B0. If w2 ∈ W1, then N necessarily contains two vertices from B0, which
contradicts the assumption that NG0(w) contains at most one vertex from B0. Hence w2 6∈ W1.
Now for every other vertex w′ in W1 \ {w1}, the two in-neighbors x′ and y′ of w′ in D belong
to B and are not incident with an edge from E. Therefore, dG(x′) = dG(y′) = 2, which implies
x′, y′ ∈ NG0(w

′) ∩B0.
Next, we assume that x and y both belong to B. By symmetry, we may assume that some

edge in N is directed towards x in D. Hence x ∈ N , which implies that, by symmetry, we may
assume that w is w1. If z is a source of the digraph induced by N in D, then z ∈ NG0(w)∩B0.
Since NG0(w) ∩B0 contains at most one vertex, z is the unique vertex in NG0(w) ∩B0. Hence
w2 ∈ U . Furthermore, for every other vertex w′ in W1 \ {w1}, the two in-neighbors x′ and y′ of
w′ in D belong to B and are not incident with an edge from E. Therefore, dG(x′) = dG(y′) = 2,
which implies x′, y′ ∈ NG0(w

′) ∩B0.
Thus, the existence of a vertex w∗ in W1 with (3) follows, and double counting the number

of edges between W1 and B0 yields the very same contradiction as at the end of Case 1.
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Case 3 G ∈ G2.

Let H1 and H2 denote the two components of G0. Let [k] = {1, 2, . . . , k}. Let k = 2. For
i ∈ [k], let W i

1 = V (Hi) ∩ (W \ U) and Bi
0 = V (Hi) ∩ (B ∩ U). Recall that G arises from G0

by adding exactly one edge between a vertex of H1 and a vertex of H2. The same arguments
as in Case 1 imply that for i ∈ [k], either W i

1 is empty or there is a vertex wi,∗ in W i
1 with

|NG0(w) ∩Bi
0| ≥

{
1, w = wi,∗,
2, w ∈ W i

1 \ {wi,∗}.

Double counting the edges between W i
1 and Bi

0 as above yields |W i
1| ≤ |Bi

0|. Now

|U | ≥
∑
i∈[k]

(|V (Hi) ∩ (W ∩ U)|+ |V (Hi) ∩ (B ∩ U)|)

=
∑
i∈[k]

(
|V (Hi) ∩ (W ∩ U)|+ |Bi

0|
)

≥
∑
i∈[k]

(
|V (Hi) ∩ (W ∩ U)|+ |W i

1|
)

=
∑
i∈[k]

(|V (Hi) ∩ (W ∩ U)|+ |V (Hi) ∩ (W \ U)|)

= |W |,

which is a contradiction.

Case 4 G ∈ G3.

Let X denote the set of vertices selected by operation O3. Let H1, . . . , Hk denote the compo-
nents of the graph that arises from G by deleting all vertices in X. By construction, there is
exactly one edge between X and V (Hi) for i ∈ [k]. For i ∈ [k], let W i

1 = V (Hi) ∩ (W \ U) and
Bi

0 = V (Hi) ∩ (B ∩ U). The same arguments as in Case 1 imply that for i ∈ [k], either W i
1 is

empty or there is a vertex wi,∗ in W i
1 with

|NG0(w) ∩Bi
0| ≥

{
1, w = wi,∗,
2, w ∈ W i

1 \ {wi,∗}.

Now the same counting argument as in Case 3 yields a contradiction. 2

Unfortunately, the inclusion in Theorem 10 is strict (a graph in H \ G is given in Figure 1).
Nevertheless, in conjunction, the results in Sections 2 and Theorem 10 allow for a complete
constructive characterization of the triangle-free graphs in H. It is folklore that the geodetic
number is NP-hard for triangle-free graphs.

Corollary 11 If T denotes the set of all triangle-free graphs, then G ∩ T = H ∩ T .

Proof: Theorem 10 implies G ∩ T ⊆ H∩T . For the converse inclusion, let G be a triangle-free
graph in H. Similarly as in Section 2, let W be a minimum geodetic set of G, let B = V (G)\W ,
and let G0 be a spanning bipartite subgraph of G with bipartition V (G0) = W ∪ B such that
every vertex in B has degree exactly 2 in G0. Let E1 denote the set of edges in E(G) \ E(G0)
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Figure 1: Example of graph in H \ G.

between vertices in the same component of G0 and let E2 denote the set of edges in E(G)\E(G0)
between vertices in distinct components of G0.

First, we assume that G0 is connected. In this case, E1 = E(G) \E(G0). For contradiction,
we assume that E1 contains two edges e and e′. By Lemmas 5 and 6, the edges e and e′ are
not both incident with vertices in W . We may therefore assume that e connects two vertices
from B. Now, since G is triangle-free, Lemmas 7, 8, and 9 imply a contradiction. Hence E1

contains at most one edge, which implies G ∈ G1 ∪ G ′1.
Next, we assume that G0 is disconnected. By Lemmas 2 and 3, all vertices incident with

edges in E1 belong to B. For contradiction, we assume that E1 is not empty. Let bb′ ∈ E1,
where b and b′ belong to some component C of G0. Since G is connected but G0 is not, some
vertex of C is incident with an edge f from E2. By Lemma 4, the edge f is not incident with
b or b′. Furthermore, by Lemma 4 (ii) and (iii), G necessarily contains a triangle, which is a
contradiction. Hence E1 is empty. Now Lemma 1 immediately implies G ∈ G2 ∪ G3, which
completes the proof. 2

Corollary 11 implies several restrictions on the cycle structure of a triangle-free graph G in H.
Let G0 with bipartition B ∪W be the underlying graph in G0. Clearly, all cycles of G that are
also cycles of G0 are of even length and alternate between B and W . Furthermore, at most one
of the vertices from B in such a cycle can have degree more than 2 in G. If G0 is connected,
the cycles of G are either such cycles of G0 or they contain the unique edges in E(G) \E(G0).
If G0 has two components, then G arises from G0 by adding a bridge and all cycles of G are
also cycles of G0. Finally, if G0 has at least three components and X is as described in O3,
then X induces an arbitrary connected triangle-free graph in G, that is, the cycle structure of
G[X] can be quite complicated. Nevertheless, all cycles in G[X] contain only vertices of degree
at least 4 in G. All further cycles of G are totally contained within one component of G0 and
contain at least one vertex from B that has degree 2 in G.

4 Recognizing all triangle-free graphs in H
By Corollary 11, the structure of the triangle-free graphs in H is quite restricted. In fact, it is
not difficult to recognize these graphs in polynomial time. This section is devoted to the details
of a corresponding algorithm.

Let G be a given connected triangle-free input graph. By Corollary 11, the graph G belongs
to H if and only if either G belongs to G0 ∪ G1 ∪ G2 or G belongs to G3.

Lemma 12 It can be checked in polynomial time whether G ∈ G0 ∪ G1 ∪ G2.

Proof: By definition, the graph G belongs to G0 ∪ G1 ∪ G2 if and only if deleting at most one
edge from G results in a graph in G0 with at most two components. Since the graphs in G0 can
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obviously be recognized in linear time, it suffices to check whether G ∈ G0 and to consider each
edge e of G in turn and check whether G − e ∈ G0. Since the graphs in G0 ∪ G1 ∪ G2 have a
linear number of edges, all this can be done in quadratic time. 2

In view of Lemma 12, we may assume from now on that G does not belong G0 ∪ G1 ∪ G2. The
following lemma is an immediate consequence of the definition of operation O3.

Lemma 13 If G belongs to G3, then there is a vertex x of G of degree at least three and two
edges el = xyl and er = xyr of G incident with x such that, in the graph G′ that arises by
deleting from G all edges incident with x except for el and er, the component C(x, el, er) of G′

that contains x has the following properties:

(i) x is a cut vertex of C(x, el, er);

(ii) C(x, el, er) has a unique bipartition with partite sets Bl ∪ {x} ∪Br and Wl ∪Wr;

(iii) Every vertex in Bl ∪ {x} ∪Br has degree 2 in C(x, el, er);

(iv) Bl ∪Wl and Br ∪Wr are the vertex sets of the two components of C(x, el, er) − x such
that yl ∈ Wl and yr ∈ Wr;

(v) None of the deleted edges connects x to a vertex from V (C(x, el, er)) \ {x};

(vi) Wl and Wr both contain a vertex of odd degree.

Proof: Choosing as x one of the vertices from the non-empty set X in the definition of O3

and choosing as e1 and e2 the two edges of G0 incident with x, the properties (i) to (v) follow
immediately. Note that C(x, el, er) is the component of G0 that contains x. For property (vi),
observe that the number of edges of C(x, el, er) between Bl ∪ {x} and Wl is exactly 2|Bl| + 1,
that is, it is an odd number, which implies that not all vertices of Wl can be of even degree. A
similar argument applies to Wr. 2

The key observation for the completion of the algorithm is the following lemma, which states
that the properties from Lemma 13 uniquely characterize the elements of X.

Lemma 14 If G belongs to G3 and a vertex x of G of degree at least three and two edges
el = xyl and er = xyr of G incident with x are such that properties (i) to (vi) from Lemma 13
hold, then

(a) G is obtained by applying operation O3 to a graph G0 in G0 with at least three components
such that x belongs to the set X used by operation O3 and

(b) C(x, el, er) defined as in Lemma 13 is the component of G0 that contains x.

Proof: Let G arise by applying operation O3 to a graph G0 in G0 with at least three components
and let X be the corresponding set used by operation O3. Let V (G0) = B∪W be the underlying
bipartition of G0. Clearly, by possibly increasing X, we may assume that every vertex b in B
that is incident with an edge in E(G) \ E(G0) either belongs to X or is no cut vertex of the
component of G0 it belongs to.
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Let a vertex x of G of degree at least three and let two edges el = xyl and er = xyr of G
incident with x be such that properties (i) to (vi) from Lemma 13 hold. Let G′ arise by deleting
from G all edges incident with x except for el and er, let C denote the component of G0 that
contains x, and let C(x, el, er) be the component of G′ that contains x.

We will prove that x belongs to X, that is, that (a) holds. Furthermore, we will prove that
the desired second statement (b) holds either for G0 or for a slightly modified alternative choice
of G0.

For contradiction, we assume that x does not belong to X.
First, we assume that x ∈ B \ X. Since x has degree at least three in G and has degree

two in G0, the vertex x is incident with an edge xy in E(G) \ E(G0). If y ∈ {yl, yr}, then,
by operation O3, the vertex y belongs to X. If C ′ denotes the component of G0 that contains
y, then a similar argument as in the proof of Lemma 13 implies that W ∩ V (C ′) contains a
vertex of odd degree. Therefore, C(x, el, er) contains a vertex of odd degree that is within even
distance from x, which contradicts properties (ii) and (iii). Hence y 6∈ {yl, yr}, which implies
that C(x, el, er) coincides with C. Now x is no cut vertex of C, contradicting property (i).
Hence x cannot belong to B \X.

Next, we assume that x ∈ W . By operation O3, the vertex x can be incident with at
most one edge from E(G) \ E(G0). Furthermore, if x is incident with such an edge, then no
other vertex in C is incident with an edge from E(G) \ E(G0). Therefore, by symmetry, we
may assume that no vertex in Bl ∪Wl defined as in Lemma 13 is incident with an edge from
E(G) \ E(G0). This implies that Bl ∪Wl is a subset of V (C). Since the vertices in Wl are all
at odd distance from x in C(x, el, er), they all belong to B ∩ V (C). By property (v), all these
vertices are of degree two in C(x, el, er), which implies a contradiction to property (vi). Hence
x cannot belong to W .

It follows that x belongs to X, that is, (a) holds.
We proceed to the proof of (b). As already noted above, we prove that (b) holds either

for G0 or for a slightly modified alternative choice of G0. If (b) does not hold for G0, that
is, C(x, el, er) is distinct from C, then the edges el and er do not coincide with the two edges
of G0 that are incident with x, say el = xyl 6∈ E(G0). Now yl is the unique vertex of some
component C ′ of G0 that is incident with an edge in E(G) \ E(G0). It follows as above that
yl cannot belong to X. Hence yl belongs to (B \ X) ∪W . If yl ∈ W , then we can exchange
the component C ′ with one of the two components of C − x within G0 and (b) follows for this
modified G0. If yl ∈ B \X, then the properties (i) to (vi) imply that C ′ is a 2-regular bipartite
graph, that is, C ′ is an even cycle. In this case, we can swap the bipartition of C ′ and perform
a similar exchange within G0 as in the case yl ∈ W . Therefore, also in this case, (b) follows for
this modified G0. 2

We proceed to the main result in this section.

Theorem 15 For a given triangle-free graph G, it can be checked in polynomial time whether
h(G) = g(G) holds.

Proof: Clearly, we can consider each component of G separately and may therefore assume
that G is connected. Let n denote the order of G. By Lemma 12, we can check in O(n2) time
whether G belongs G0 ∪ G1 ∪ G2. If this is the case, then Corollary 11 implies h(G) = g(G).
Hence, we may assume that G does not belong to G0 ∪ G1 ∪ G2. Note that there are O(n3)
choices for a vertex x of G and two incident edges el and er of G. Furthermore, note that for
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every individual choice of the triple (x, el, er), the properties (i) to (vi) from Lemma 13 can be
checked in O(n) time. Therefore, by Lemmas 13 and 14, in O(n4) time, we can

• either determine that no choice of (x, el, er) satisfies the conclusion of Lemma 13, which,
by Corollary 11, implies h(G) 6= g(G),

• or find a suitable triple (x, el, er) and reduce the instance G to a smaller instance G− =
G− V (C(x, el, er)).

Since the order of G− is at least three less than n, this leads to an overall running time of
O(n5). 2

The algorithm outlined in the proof of Theorem 15 allows to determine for every triangle-free
graph G with h(G) = g(G), a bipartite subgraph G0 with bipartition V (G0) = W ∪ B as in
Section 2. Since g(G) = g(G0) = |W |, it is therefore possible to determine g(G) in polynomial
time for these graphs.

5 Forbidden induced subgraphs

In this last section, we give a complete characterization of the maximal hereditary subclass of
H in terms of forbidden induced subgraphs.

It is an easy exercise to prove h(G) = g(G) whenever G is a path, a cycle, or a star.
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Figure 2: The five forbidden subgraphs G1, . . . , G5.

Let G1, . . . , G5 be the graphs depicted in Figure 2.

Theorem 16 If G is a graph, then h(G′) = g(G′) for every induced subgraph G of G if and
only if G is {G1, . . . , G5}-free.

Proof: Since 3 = h(G1) = h(G3) < g(G1) = g(G3) = 4 and 2 = h(G2) = h(G4) = h(G5) <
g(G2) = g(G4) = g(G5) = 3, the “only if”-part of the statement follows. In order to prove
the “if”-part, we may assume, for contradiction, that G is a connected {G1, . . . , G5}-free graph
with h(G) < g(G). We consider different cases.

Case 1 G contains a triangle T : abca.

Since G is G2-free, no vertex has exactly one neighbor in T .
If some vertex has no neighbor in T , then, by symmetry, we may assume that there are two

vertices u and v of G such that uva is a path and u has no neighbor in T . Since G is G2-free,
we may assume that v is adjacent to b. Now u, v, a, and b induce G2, which is a contradiction.
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Hence every vertex has at least one neighbor in T . This implies that the vertex set of G can
be partitioned as

V (G) = {a, b, c} ∪N({a, b}) ∪N({a, c}) ∪N({b, c}) ∪N({a, b, c}),

where N(S) = {u ∈ V (G) \ {a, b, c} | NG(u) ∩ {a, b, c} = S}.
If two vertices, say u and v, in N({a, b}) are adjacent, then u, v, a, and c induce G2, which is

a contradiction. Hence, by symmetry, each of the three sets N({a, b}), N({a, c}), and N({b, c})
is independent. If some vertex u in N({a, b}) is not adjacent to some vertex v in N({a, c}),
then u, v, a, and b induce G2, which is a contradiction. Hence, by symmetry, there are all
possible edges between every two of the three sets N({a, b}), N({a, c}), and N({b, c}). If some
vertex u in N({a, b}) is not adjacent to some vertex v in N({a, b, c}), then u, v, a, and c induce
G2, which is a contradiction. Hence, by symmetry, there are all possible edges between the two
sets N({a, b})∪N({a, c})∪N({b, c}) and N({a, b, c}). If N({a, b}) contains exactly one vertex,
say u, then IG({u, c}) = V (G), which implies the contradiction 2 ≤ h(G) ≤ g(G) ≤ 2. Hence,
by symmetry, none of the three sets N({a, b}), N({a, c}), and N({b, c}) contains exactly one
vertex. If there are two vertices in N({a, b}), say u1 and u2, and two vertices in N({b, c}), say
v1 and v2, then u1, u2, v1, v2, a, and c induce G5, which is a contradiction. Hence no two of
the three sets N({a, b}), N({a, c}), and N({b, c}) contain at least two vertices.

Altogether, we may assume, by symmetry, that N({a, c}) and N({b, c}) are empty. Now
IG({a, b}) = V (G), which implies the contradiction 2 ≤ h(G) ≤ g(G) ≤ 2 and completes the
proof in this case.

Case 2 G contains no triangle but a cycle C of length four: abcda.

If some vertex has no neighbor in C, then, by symmetry, we may assume that there are two
vertices u and v of G such that uva is a path. Since G is triangle-free, v is not adjacent to b
or d. Hence u, v, a, b, and d induce G1, which is a contradiction. Hence every vertex has at
least one neighbor in C. Since G is triangle-free, this implies that the vertex set of G can be
partitioned as

V (G) = {a, b, c, d} ∪N({a}) ∪N({b}) ∪N({c}) ∪N({d}) ∪N({a, c}) ∪N({b, d}),

where N(S) = {u ∈ V (G) \ {a, b, c, d} | NG(u) ∩ {a, b, c, d} = S}.
If there is a vertex u in N({a}) and a vertex v in N({c}), then u and v are adjacent, because

G is G3-free. Now u, v, a, b, and d induce G1, which is a contradiction. Hence, by symmetry,
we may assume that N({c})∪N({d}) is empty. If there is a vertex u in N({b}) and a vertex v
in N({a, c}), then u and v are not adjacent, because G is G4-free. Now u, v, a, b, and d induce
G1, which is a contradiction. Hence, by symmetry, one of the two sets N({b}) and N({a, c})
is empty and one of the two sets N({a}) and N({b, d}) is empty. If there is a vertex u in
N({a, c}) and a vertex v in N({b, d}), then u, v, a, b, c, and d induce either G4 or G5, which
is a contradiction. Hence, by symmetry, we may assume that N({b, d}) is empty.

Since G is G1-free, there are all possible edges between the two sets N({a}) and N({b}).
Since G is G1-free, both of the sets N({a}) and N({b}) contain at most one vertex.
Since G is triangle-free, there is no edge between N({a}) and N({a, c}).
If both of the sets N({a}) and N({b}) are not empty, then G is a graph of order 6 with

h(G) = g(G) = 3, which is a contradiction. Hence, by symmetry, we may assume that

V (G) = {a, b, c, d} ∪N({a}) ∪N({a, c}).
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If N({a}) is empty, then IG({a, c}) = V (G), which implies the contradiction 2 ≤ h(G) ≤
g(G) ≤ 2. Hence N({a}) contains exactly one vertex, say u, and IG({a, c, u}) = V (G), which
implies g(G) ≤ 3. If HG(U) = V (G) for some set U of vertices of G, then u ∈ U . In view of the
structure of G, it follows easily that h(G) ≥ 3, which implies the contradiction h(G) = g(G)
and completes the proof in this case.

Case 3 G does not contain a triangle or a cycle of length four.

If G contains no vertex of degree at least 3, then G is a path or a cycle, which implies the
contradiction h(G) = g(G). Hence, we may assume G contains a vertex of degree at least 3.
Since G is G1-free, G is a star, which implies the contradiction h(G) = g(G) and completes the
proof. 2

6 Conclusion

This paper discloses a number of properties of the class H of graphs G for which h(G) = g(G),
allowing for the efficient recognition of two rather comprehensive subclasses of H: the class of
triangle-free graphs in H, and the maximal hereditary subclass of H.

As for open problems, at least two of them are immediate: to give a constructive char-
acterization of all graphs in H, and to describe an efficient algorithm to recognize all graphs
in H.
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