
A TIGHT BOUND FOR EXHAUSTIVE KEY SEARCH

ATTACKS AGAINST MESSAGE AUTHENTICATION

CODES ∗

Vińıcius G. P. de Sá1, Davidson R. Boccardo2, Luiz
Fernando Rust2 and Raphael C. S. Machado2,1

Abstract. A message authentication code (MAC) is a function that
takes a message and a key as parameters and outputs an authentication
of the message. MAC are used to guarantee the legitimacy of messages
exchanged through a network, since generating a correct authentication
requires the knowledge of the key defined secretly by trusted parties.
However, an attacker with access to a sufficiently large number of mes-
sage/authentication pairs may use a brute force algorithm to infer the
secret key: from a set containing initially all possible key candidates,
subsequently remove those that yield an incorrect authentication, pro-
ceeding this way for each intercepted message/authentication pair until
a single key remains. In this paper, we determine an exact formula for
the expected number of message/authentication pairs that must be
used before such form of attack is successful, along with an asymptot-
ical bound that is both simple and tight. We conclude by illustrating
a modern application where this bound comes in handy, namely the
estimation of security levels in reflection-based verification of software
integrity.

1991 Mathematics Subject Classification. 94A60

Keywords and phrases: Cryptography; Message Authentication Code; Asymptotic Analysis

∗ This is a manuscript by the authors. The final article was published by EDP Sciences with

DOI number 10.1051/ita/2012025.
1 Depto. de Ciência da Computação — Univ. Federal do Rio de Janeiro — Brazil; e-mail:
vigusmao@dcc.ufrj.br
2 Inmetro — National Institute of Metrology, Quality and Technology — Brazil; e-mail:
drboccardo@inmetro.gov.br & lfrust@inmetro.gov.br & rcmachado@inmetro.gov.br

2

Introduction

Granting the legitimacy of messages exchanged through unsafe channels is pri-
mordial for several applications. A common security practice is to have each
message be sent along with an authentication, so to say a digital fingerprint of
the message. Such authentication is usually generated by a hash-based algorithm
called a message authentication code (MAC), whose input comprises not only the
message itself but also a predefined key only known to the communicating parties.
In order to verify that the message has not been corrupted, the receiver computes
its authentication anew and checks whether it matches the received version. Al-
though MAC specifications are generally considered to be of public knowledge, the
point is that an adversary, willing to maliciously corrupt a message, would have
to either recompute its authentication—which requires knowledge of the key—or
try to guess it. Indeed, both kinds of attacks—attempts to disclose the key and
attempts to guess the authentication directly—do exist and demand attention.

We focus on the exhaustive key search (EKS) attack model, wherein the attacker
aims to infer the secret MAC key out of a set of intercepted message/authentication
pairs. Even though some intuitive upper bounds on the complexity of the EKS
are well accepted [3], lower bounds are considered to be scarce [2]. We emphasize
that, while upper bounds are important from the point of view of the attacker (to
estimate the maximum amount of time it takes an attack to be successful), lower
bounds are fundamental for the defender (to build a resilient defense strategy).

The paper is structured as follows. In Section 1, we define a MAC and the EKS
attack model. In Section 2, we give our main contribution, namely a tight bound
for its expected time complexity. Section 3 describes an application in software
integrity verification, and in Section 4 we present some concluding remarks.

1. MAC and the exhaustive key search attack

A message authentication code is formally a function f : M×K → A that takes
two parameters—a message ρ ∈ M and a key κ ∈ K—and outputs an authen-
tication α ∈ A. The sets M , K and A are, respectively, the message space, the
key space and the authentication space of the MAC. An usual message exchanging
protocol is such that all sent messages are accompanied by their authentications,
as computed by the sender using a predefined key that is kept secret. In order to
check the message integrity, the receiver computes its authentication from scratch
using the same key agreed upon with the sender, and compares it with the received
authentication.

In the exhaustive key search attack model [3], as it is known in the computer
security community, an opponent gathers a number of message/authentication
pairs (ρj , αj), one at each round j, removing from a set K ′j of candidate keys
every key κi ∈ K ′j such that f(ρj , κi) 6= αj . This approach yields a sequence
K = K ′1 ⊇ K ′2 ⊇ . . . ⊇ K ′t, when |K ′t| = 1 reveals the key. The usual algorithm of
the EKS attack against a MAC is illustrated in Figure 1.

3

EKS Attack
input MAC function f : M ×K → A
output MAC key κ
1. K ′ ← K
2. j ← 0
3. repeat
3.1. j ← j + 1
3.2. obtain message/authentication pair (ρj , αj) // MAC query
3.3. for each κi ∈ K ′
3.3.1 if f(ρj , κi) 6= αj // MAC computation
3.3.1.1 K ′ ← K ′ \ {κi}
4. until |K ′| = 1
5. return κ ∈ K ′

Figure 1. Exhaustive key search attack against a MAC.

There are two crucial operations in the EKS algorithm: the obtainment of
each message/authentication pair (ρj , αj) in line 3.2 (often referred to as a MAC
query), and the evaluation of f(ρj , κi) in line 3.3.1 (or MAC computation). Its
complexity analysis must therefore take into account (i) the number X of disclosed
message/authentication pairs, and (ii) the number Y of times the algorithm com-
putes f before it halts. In the next section, we determine these values and obtain
a general formula for the time complexity of an EKS attack against a MAC.

2. Complexity of the EKS

Let f be a MAC with message space M , key space K and authentication space
A. Both the key and the authentication normally have a fixed bitlength, say k and
a, respectively, whereas the message has arbitrary bitlength. We therefore have
|K| = 2k and |A| = 2a.

First, we model the attack using a simple card game analogy. There are |K|
distinct candidate piles of cards (one pile for each possible key κi ∈ K), where
each card has one among |A| possible face values with equiprobability.1 A special
pile, called the query pile, is kept apart, and its cards can be revealed one-by-one
in a timely fashion. At each round j of the game, the j-th card aj of the query
pile is revealed and all candidate piles whose j-th card is not a match for aj are
eliminated. The goal is to find which pile, among those |K| undisclosed candidate
piles, has a card sequence that is identical to that in the query pile. Since it is
a given that exactly one such candidate pile exists, the game stops whenever a
single candidate pile remains.

1We hold to the usual assumption that a MAC output approximates a uniform random
variable. The reader may want to check the so-called random oracle model introduced by Bellare
and Rogaway [1,8].

4

The analogy is straightforward: the act of observing the j-th card from the
query pile corresponds to the act of obtaining a new message/authentication pair
(ρj , aj), and the observation of the j-th card from the i-th candidate pile corre-
sponds to the calculation of f(ρj , κi) performed by the attacker.

Theorem 2.1. The expected number of MAC queries in the EKS attack against
a MAC is Θ(k/a).

Proof. Back to our card game analogy, let X be a random variable for the number
of rounds until only one candidate remains. The probability that X is equal to j
is the probability that j rounds are sufficient to eliminate |K| − 1 candidates, but
j − 1 rounds are not. Now, for d ≥ 0, the probability that d rounds are sufficient
to eliminate |K| − 1 candidates is (1− (1/|A|)d)|K|−1, hence

Pr[X = j] =

(
1− 1

|A|j

)|K|−1
−
(

1− 1

|A|j−1

)|K|−1
,

and we can obtain the expectation of X as follows:

E[X] =

∞∑
j=1

j Pr[X = j] =

=

∞∑
j=1

j

[(
1− 1

|A|j

)|K|−1
−
(

1− 1

|A|j−1

)|K|−1]
=

=

∞∑
j=1

j

(
1− 1

|A|j

)|K|−1
−
∞∑
j=1

j

(
1− 1

|A|j−1

)|K|−1
=

= lim
J→∞

 J∑
j=1

j

(
1− 1

|A|j

)|K|−1
︸ ︷︷ ︸

L1

− lim
J→∞

 J∑
j=1

j

(
1− 1

|A|j−1

)|K|−1
︸ ︷︷ ︸

L2

.

We will now handle separately the two limits above, which we will refer to as
L1 and L2, respectively. We start by isolating the last term in the summation of
L1, which then becomes

L1 = lim
J→∞

J−1∑
j=1

j

(
1− 1

|A|j

)|K|−1
+ J

(
1− 1

|A|J

)|K|−1 =

= lim
J→∞

J−1∑
j=1

j

(
1− 1

|A|j

)|K|−1
+ J

 ,
since limJ→∞

(
1− 1

|A|J

)|K|−1
= 1.

5

We proceed with a slight modification in the index and bounds of the summation
in L2, yielding

L2 = lim
J→∞

J−1∑
j=0

(j + 1)

(
1− 1

|A|j

)|K|−1 .
We now isolate the first term in the summation above, allowing us to rewrite

L2 as follows:

L2 = lim
J→∞

(0 + 1)

(
1− 1

|A|0

)|K|−1
+

J−1∑
j=1

(j + 1)

(
1− 1

|A|j

)|K|−1 =

= lim
J→∞

J−1∑
j=1

(j + 1)

(
1− 1

|A|j

)|K|−1
=

= lim
J→∞

J−1∑
j=1

j

(
1− 1

|A|j

)|K|−1
+

J−1∑
j=1

(
1− 1

|A|j

)|K|−1 .
We can now resume the calculation of E[X], and we obtain

E[X] = L1 − L2 =

= lim
J→∞

J−1∑
j=1

j

(
1− 1

|A|j

)|K|−1
+ J

−
lim

J→∞

J−1∑
j=1

j

(
1− 1

|A|j

)|K|−1
+

J−1∑
j=1

(
1− 1

|A|j

)|K|−1 =

= lim
J→∞

J − J−1∑
j=1

(
1− 1

|A|j

)|K|−1 ,
by canceling out the first term of L1 with the first term of L2. Now, after substi-

tuting J with 1 +
∑J−1

j=1 1 and a few easy manipulations, we obtain

E[X] = lim
J→∞

1 +

J−1∑
j=1

1−
J−1∑
j=1

(
1− 1

|A|j

)|K|−1 =

= 1 + lim
J→∞

J−1∑
j=1

[
1−

(
1− 1

|A|j

)|K|−1]
=

= 1 +

∞∑
j=1

[
1−

(
1− 1

|A|j

)|K|−1]
.

6

The trick now is to split the infinite summation above into two partial sums S1

and S2, where

S1 =

L∑
j=1

[
1−

(
1− 1

|A|j

)|K|−1]
,

S2 =

∞∑
j=L+1

[
1−

(
1− 1

|A|j

)|K|−1]
,

so that E[X] = 1 + S1 + S2.
By appropriately choosing L = dlog|A| |K|e, we will be able to show that

(i) 0.28k/a ≤ S1 ≤ 1 + k/a, and
(ii) 0 < S2 ≤ 1,

therefore proving our desired expectation satisfies

1 + 0.28k/a ≤ E[X] ≤ 3 + k/a,

and the theorem ensues.

(i) The upper bound is straightforward. Since all terms in S1 are less than
or equal to 1, S1 must be less than or equal to the number L of terms, hence
S1 ≤ dlog|A| |K|e ≤ 1 + k/a. For the lower bound, we argue that the sequence of
terms in S1 is monotonically decreasing, so S1 must be greater than or equal to
the number L of terms multiplied by the last term, that is,

S1 ≥ L ·

[
1−

(
1− 1

|A|L

)|K|−1]

≥ log|A| |K| ·

[
1−

(
1− 1

|K|+ 1

)|K|−1]
.

Now, since |K| ≥ 2, the well-known inequality (1 − 1/x)y ≤ e−y/x for x, y ≥ 1
allows us to write the suitable bound(

1− 1

|K|+ 1

)|K|−1
≤ e

1−|K|
|K|+1 ,

and we obtain

S1 ≥ log|A| |K| · [1− e
1−|K|
|K|+1]

≥ log|A| |K| · [1− e−1/3]

≥ 0.28k/a.

7

(ii) Since all terms in S2 are positive, S2 is positive. For the upper bound, we
recall that

xn − yn = (x− y)

n∑
m=1

xn−mym−1.

By making x = 1, y = 1− 1
|A|j and n = |K|−1 in the expression above, the general

term in S2 can be bounded as follows:

1−
(

1− 1

|A|j

)|K|−1
= 1|K|−1 −

(
1− 1

|A|j

)|K|−1
=

=
1

|A|j

|K|−1∑
m=1

(
1− 1

|A|j

)m−1

≤

≤ |K| − 1

|A|j
,

where the inequality comes from the fact that the terms in the summation are all
less than 1. Thus, we can write

S2 ≤
∞∑

j=L+1

|K| − 1

|A|j
.

Now, since the sum of the terms of an infinite geometric progression x1r, x1r
2, x1r

3, . . .
for 0 < r < 1 converges to x1 · 1

1−r , and because |A|j > |K| − 1 for all j > L, we
obtain

S2 ≤
∞∑

j=L+1

|K| − 1

|A|j
=

=
|K| − 1

|A|L+1
· |A|
|A| − 1

=

=
|K| − 1

|A|L · |A|
· |A|
|A| − 1

≤

≤ |K| − 1

|K| · |A|
· |A|
|A| − 1

=

=
|K| − 1

K
· 1

|A| − 1
≤

≤ 1,

where the penultimate inequality comes from the fact that L had been chosen as
dlog|A| |K|e. This concludes the proof. �

Theorem 2.2. The expected number of MAC computations in the EKS attack
against a MAC is Θ(2k).

8

Proof. Let Y be a random variable for the total number of MAC computations

during the EKS attack. We show that E[Y] is (|K| − 1) |A||A|−1 . Using the card

game analogy, the probability that a pile is eliminated by the time a card from
a candidate pile is observed is the probability that that card does not match
the corresponding card in the query pile, namely p = (|A| − 1)/|A|. Since the
outcomes of all card observations are independent from one another, the number
Yq of observations between the (q − 1)-th elimination of a candidate and the q-th
elimination of a candidate is a geometric random variable, whose expectation is

1/p = |A|/(|A| − 1). Clearly, Y =
∑|K|−1

q=1 Yq. By the linearity of expectations,

E[Y] = E

|K|−1∑
q=1

Yq

 =

|K|−1∑
q=1

E[Yq] = (|K| − 1)
|A|
|A| − 1

and the theorem follows. �

As a corollary of the previous results, the EKS attack takes expected time
Θ((k/a)tq + 2ktc), where tq is the MAC query time (the time to obtain each
message/authentication pair) and tc is the MAC computation time (the time to
output an authentication for a given message/key pair).

3. Application to software integrity verification

A fundamental issue in critical software dependent systems is the verification of
whether the software that runs in some electronic device—such as mobile phones,
credit card terminals, pay-TV interfaces, smart meters etc.—corresponds to a pre-
viously validated base version, not tampered with by some ill-intentioned agent.
The simplest method of verifying the integrity of a software is to access it di-
rectly and compare it against the base version. However, when this verification
is done remotely over a transmission channel with limited bandwidth, it is often
infeasible to have the whole code be sent through. Moreover, this approach could
compromise the developer’s intellectual property in many cases. Modern software
integrity verification methods (SIVM) sort out both problems by using the con-
cept of reflection, where a cryptographic digest of the most critical parts of the
software is obtained in a MAC-like fashion. This allows for the comparison of the
(smaller, not prone to copyright issues) cryptographic digest, instead of the code
itself. Recently, several works [4–7,9] have dealt with such reflection-based SIVM.
However, a rigorous discussion on their robustness was still missing.

The results for the EKS attack against a MAC can be naturally leveraged
to the scope of reflection-based SIVM. To establish the correspondence of both
scenarios, we note that the software digest produced by the latter is similar to
the authentication produced by a MAC, in the sense that it is also the output of
a non-injective function which takes two parameters, one that is public (in this
case an integer usually called seed) and another which is secret (in this case some
subset of the software code itself, henceforth referred to as code chunk). During

9

the verification process, a seed is provided, and the function computes the intended
digest. An attacker aims to replace parts of the software with malicious code while
still being able to produce the expected digest for whatever seed is provided, thus
deceiving future verifications. To do so, it is necessary to figure out and retain
a copy of the original code chunk which is processed by the digest-generating
function. For this purpose, an attacker may carry on a brute force attack in the
likes of the EKS by collecting a sufficient number of seed/digest pairs and filtering
out non-matching candidates from an initially big set of code chunks.

By reproducing the same reasoning as in Section 2, we observe that the expected
number of seed/digest pairs before the attack is successful is here again Θ(k/a),
where k is the bitlength of the code chunk considered by the digest-generating
function and a is the bitlength of the digest. It thus becomes clear that such kind
of attack can be precluded by setting a reasonable ratio between the size of the
code chunk and the size of the digest. One must notice, however, that assigning
too small a value for a has the drawback of reducing the injectivity of the digest
function, which increases the probability that a malicious software returns the
expected digest out of pure chance. A complementary approach is to use the
bounds given by Theorem 2.1 to conceive a limit for the maximum number of
digests that can be queried within a certain period of time.

4. Final considerations

Estimating the threat posed by brute force attacks is vital when assessing
the robustness of MAC algorithms. The emergence of new powerful computing
paradigms—such as grid computing—may lead to situations where an attacker
has huge processing power2. To make sure no adversary with “close-to-infinite”
computational power can cause any damage, one must enforce a safe lower bound
to the time complexity of the attacks. Quite surprisingly, good lower bounds on
the complexity of the exhaustive key search attack were not known, so the soft-
ware security personnel could do no better than underestimating it for the sake of
security. A tight bound on that complexity certainly means economy of resources.

References

[1] M Bellare and P Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. Proc. 1st ACM conference on Computer and communications security (1993) 62–

73.
[2] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography, CRC

Press, USA, 1996.

[3] B. Preneel. Hash functions and MAC algorithms based on block cyphers. In Cryptogra-

phy and Coding, 6th IMA International Conference, Lecture Notes in Computer Science
1355:270–282, 1997.

2The Great Internet Mersenne Prime Project (http://www.mersenne.org/primenet) recently
accomplished 50 TFLOP (trillions of operations per second) using a network of over three hundred
thousand computers.

10

[4] D. Spinellis. Reflection as a Mechanism for Software Integrity Verification. ACM Transac-

tions on Information and System Security, 3(1): 51–62, 2000.
[5] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: Software-based attestation

for embedded devices. In 2004 IEEE Symposium on Security and Privacy, page 272, Los

Alamitos, CA, 2004.
[6] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: verifying

code integrity and enforcing untampered code execution on legacy systems. SIGOPS Oper.

Syst. Rev., 39(5):1–16, 2005.
[7] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. Externally verifiable code

execution. Commun. ACM, 49(9): 45–49, 2006.

[8] D. R. Stinson. 2006. Some Observations on the Theory of Cryptographic Hash Functions.
Des. Codes Cryptography, 38 (2006) 259–277.

[9] Y. Yang, X. Wang, S. Zhu, and G. Cao. Distributed software-based attestation for node com-
promise detection in sensor networks. In Proceedings of the IEEE Symposium on Reliable

Distributed Systems, pp. 219–228, 2007.

