
Note on the Homogeneous Set Sandwich Problem ∗

Celina M. H. de Figueiredo† Vińıcius G. P. de Sá∗

Abstract

A homogeneous set is a non-trivial module of a graph, i.e. a non-unitary, proper subset H
of a graph’s vertices such that all vertices in H have the same neighbors outside H. Given two
graphs G1(V,E1), G2(V,E2), the Homogeneous Set Sandwich Problem asks whether there exists
a sandwich graph GS(V,ES), E1 ⊆ ES ⊆ E2, which has a homogeneous set. Recently, Tang et
al. [9] proposed an interesting O(41 ·n2) algorithm for this problem, which has been considered
its most efficient algorithm since. We show the incorrectness of their algorithm by presenting
three counterexamples.

1 Introduction

A graph GS(V,ES) is said to be a sandwich graph of graphs G1(V,E1), G2(V,E2) if and only if
E1 ⊆ ES ⊆ E2. A homogeneous set H for a graph G(V,E) is a subset of V such that 1 < |H| < |V |
and for all v ∈ V \ H, either (v, h) ∈ E for all h ∈ H or (v, h) /∈ E for all h ∈ H. Given two
graphs G1(V,E1), G2(V,E2) such that E1 ⊆ E2, the Homogeneous Set Sandwich Problem (HSSP)
comprises the search for a sandwich graph GS(V,ES) of (G1, G2) which contains a homogeneous
set. Such a homogeneous set is called a sandwich homogeneous set of pair (G1, G2).

Throughout this paper, we denote the number of vertices in the input graphs by n, the number
of edges in graph Gi by mi and the number of edges not in Gi by mi.

Notwithstanding the existence of linear-time algorithms for solving the problem of finding ho-
mogeneous sets in a single graph [2, 4, 5, 6, 7, 8], the known HSSP algorithms are considerably less
efficient.

The first polynomial-time algorithm for this problem was presented by Cerioli et al. [1], which
set HSSP’s upper bound at their algorithm’s O(n4) time complexity. We refer to this algorithm
as the Exhaustive Bias Envelopment Algorithm (EBE algorithm, for short). A few years later,
Tang et al. [9] tailored a brand new algorithm, based on a quite beautiful idea of theirs, which
would have largely diminished HSSP’s upper bound. This algorithm is referred to as the Bias
Graph Components Algorithm (BGC algorithm, for short). We show, with brief counterexamples,
that this algorithm is unfortunately not correct. Consequently, the most efficient algorithm that
correctly solves the HSSP would turn back to be former EBE algorithm presented in [1], resetting
HSSP’s upper bound at O(n4). A careful study of the underlying ideas contained in both [1] and
[9], though, has led us to the development of a faster deterministic algorithm, which establishes [3]
a new upper bound to the problem at O(m1m2).

∗This is a manuscript by the authors. The final article was published by Elsevier with DOI number
10.1016/j.ipl.2004.09.022.
†Instituto de Matemática and COPPE, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, 21945-970

Rio de Janeiro, RJ, Brazil. E-mail: {celina,vigusmao}@cos.ufrj.br

1

We summarize the EBE algorithm, in Section 2, and refine its analysis. Actually, we show that
its time complexity can be more precisely bounded by O(n2 ·(m1 + m2)), which is somewhat better.
In Section 3, we give a brief description of the BGC algorithm and point out where its basic flaw
lies by presenting three counterexamples.

2 The Exhaustive Bias Envelopment algorithm

Before describing the EBE algorithm, presented in [1], we define some notation which will be used
henceforth.

Let GS(V,ES) be a sandwich graph of graphs G1(V,E1), G2(V,E2). The edges in E1 are called
mandatory edges, once each and every sandwich graph of (G1, G2) has to contain them. On the
other hand, the edges not in E2 are said to be forbidden edges, meaning that no sandwich graph
of (G1, G2) is allowed to contain them. A vertex b ∈ V is called a bias vertex of a vertex set
S ⊆ V \{b} if there exists at least one mandatory edge (b, v) and at least one forbidden edge (b, w),
for some v, w ∈ S. The set B(S) contains all bias vertices of S, thereby it is called the bias set of
S [9].

The following theorem, based on the concept of bias sets, gives a characterization of sandwich
homogeneous sets and is implicit in the proof of correctness of the EBE algorithm, presented in [1].

Theorem 1. The set S ⊂ V, |S| ≥ 2, is a sandwich homogeneous set of a pair (G1, G2) if and only
if its bias set B(S) is the empty set.

Proof. Suppose B(S) 6= ∅. Thus, in all possible sandwich graphs of (G1, G2), any vertex t ∈ B(S)
must be adjacent to at least one vertex v ∈ S and also non-adjacent to at least one vertex w ∈ S.
This clearly prevents S from being a sandwich homogeneous set. If we suppose, on the other hand,
that B(S) = ∅, we are able to build a sandwich graph GS(V,ES) of (G1, G2) in such a way that S
is a homogeneous set of GS . We do this by adding all mandatory edges (u, v) ∈ E1 to an initially
empty ES . Then, for every vertex x ∈ V \ S such that (x, y) is mandatory for some y ∈ S, we add
to ES the edges (x, z) from x to each and every vertex z ∈ S. Notice that this is always possible,
once x is not a bias vertex of S.

Given Theorem 1, it is quite simple to understand the EBE algorithm. It starts by choosing
a sandwich homogeneous set candidate {x, y}. Then it successively determines the candidate’s
bias vertices and adds all of them to the current candidate. We refer to this procedure as bias
envelopment. The bias envelopment continues until either a candidate with an empty bias set has
been found, whereby the algorithm stops with an yes answer, or else the candidate set has become
equal to the input vertex set V , in which case the algorithm restarts the process with another initial
pair of vertices. If no sandwich homogeneous set has been found by the time all possible pairs have
been investigated, the algorithm answers no.

Figure 1 presents the pseudo-code for the EBE algorithm.

Theorem 2. [1] The EBE algorithm is a complete, correct method for solving the HSSP.

The time complexity of this algorithm is undoubtedly O(n4), as in [1]. However, we can tighten
this bound a little bit by allowing m to take place in the analysis.

Let G1(V,E1), G2(V,E2) be an input for the HSSP. At a first glance, each iteration of the
algorithm’s inner loop (lines 1.3.1 to 1.3.3) would take O(n2) time, for computing a bias set B(H)

2

The Exhaustive Bias Envelopment algorithm (G1(V,E1), G2(V,E2))

1. For each pair of vertices {x, y} ⊂ V do
1.1. H ← {x, y}.
1.2. Find the bias set B(H).
1.3. While H 6= V do
1.3.1. If B(H) = ∅ then return yes and H. End.
1.3.2. H ← H ∪B(H).
1.3.3. Update B(H).
2. Return no.

Figure 1: The EBE algorithm [1]

from scratch demands that all vertices v that are not in H are investigated (in order to check out
whether there exists both mandatory and forbidden edges between v and whichever vertices in H).
Notice, however, that each bias set (except for the first one, which is outside the inner loop) is
not computed from scratch, but updated (line 1.3.3), instead, from the bias set of the preceding
iteration. This is accomplished with the introduction of three auxiliary, dynamically maintained
sets, as described in [1]. Each update in the current bias set is, then, achieved as a result of a
constant number of unions, differences and intersections of sets, none of which containing more
than n vertices. Along with the fact that no vertex enters the bias set more than once, this allows
that the whole loop (i.e. all its iterations) can be carried on in O(n2) time. Thus, the complexity
of the EBE algorithm, which runs the bias envelopment on O(n2) candidates in the worst case, is
certainly O(n2 · n2) = O(n4). Nevertheless, this analysis can be slightly improved.

The point is, one of the sets involved in each of those unions, differences and intersections
described in [1] is always the set of neighbors, in G1 (resp. non-neighbors, in G2), of vertices b in the
bias set of the preceding iteration. We remark that any union, difference or intersection of any two
subsets S1, S2 of some finite set S with pre-ordered elements can be achieved in O(Min{|S1|, |S2|})
time, granted an adequate data structure is used. Thus, the time complexity of any operation
involving the set N1(b) (resp. N2(b)) of neighbors of b in G1 (resp. non-neighbors of b in G2),
during a bias set update, is correctly bounded by a linear function of the cardinality of N1(b)
(resp. N2(b)). On this basis, each iteration of the inner loop (lines 1.3.1 to 1.3.3) can be done in
O(

∑
b∈B(H) |N1(b)| + |N2(b)|) time. As each vertex v ∈ V appears in B(H) only once, the whole

bias envelopment loop (line 1.3) takes O(
∑

v∈V |N1(v)|+ |N2(v)|) = O(m1 + m2) time. Therefore,
the whole EBE algorithm runs in O(n2 · (m1 + m2)) time.

3 The Bias Graph Components algorithm

The main idea of the BGC algorithm, presented in [9], is to use the bias relation introduced in
Section 2 to construct a directed graph, called bias graph. The bias graph exhibits at once these
relations, allowing interdependent vertices to be quickly grouped in a number of disjoint sets, some
of which likely to be associated with sandwich homogeneous sets.

The bias graph GB(VB, EB) of a pair of graphs G1(V,E1), G2(V,E2) has vertex set VB =
{[x, y] | x, y ∈ V, x 6= y} and there are two outgoing edges from vertex [u, v] to vertices [u,w] and

3

The Bias Graph Components algorithm (G1(V,E1), G2(V,E2))

1. Construct the bias graph GB of (G1, G2).
2. Find an end strongly connected component C of GB.
3. Let H denote the set of vertices in V that label the vertices in C.
4. If H = V then return no. End.
5. Return yes and H.

Figure 2: The BGC algorithm [9]

[v, w] in GB if and only if vertex w is a bias vertex of vertex set {u, v} with respect to the pair
(G1, G2). Notice that vertices [x, y] and [y, x] in GB are the same.

Once the bias graph has been constructed, the algorithm runs Tarjan’s method [10] to find all its
strongly connected components and then looks for an end strongly connected component (ESCC)
among them, i.e. a strongly connected component with no outgoing edges. If only one ESCC is
found and it embraces all input vertices (as part of its vertices’ labels), the algorithm returns no.
Otherwise, the algorithm translates one of the bias graph’s ESCCs, say component C, into the set
H ⊂ V of input vertices that are used to label C’s vertices. Then it returns yes and H, for H is
allegedly a sandwich homogeneous set.

The summarized steps of the BGC algorithm are shown in Figure 2.

Claim 3. [9] The BGC algorithm correctly solves the HSSP.

Tang et al. present Claim 3 as a theorem whose proof is based on the validity of the next two
lemmas, one for the algorithm’s correctness and the other for its completeness. We show that both
are incorrect.

Lemma 4. [9] The set H of vertices found in line 3 of the BGC algorithm is a sandwich homoge-
neous set of the input graphs (G1, G2).

To begin with, Figure 3(a) shows a very simple refutation. It presents a pair of graphs (G1, G2)
that produce the bias graph GB(VB, EB) in Figure 3(b). It is easy to see that the subgraph C on
the left of the dashed line constitutes an ESCC. (The bold edges in C stress the existence of cycles
providing a path from each vertex in C to every other vertex in C. Notice, also, that all edges
that come across the dashed line reach C, which makes an end strongly connected component out
of it.) The set H = {1, 2, . . . , 7} ⊂ V that labels the vertices in C, however, is not a sandwich
homogeneous set of (G1, G2). (Notice that vertex 8 is a bias vertex of H, once the input instance
presents mandatory edge (1, 8) ∈ E1 and forbidden edge (2, 8) /∈ E2.) As the BGC algorithm might
possibly choose C (among other existing GB’s ESCCs) in line 2, it is likely to answer yes along
with set H = {1, 2, . . . , 7}, which is definitely not a sandwich homogeneous set of (G1, G2).

Tang et al. seem to have overlooked the possibility that an ESCC C does not comprise all
possible vertices [x, y] such that x and y appear in some of its vertices’ labels. This may cause the
set H ⊆ V , associated with C ⊂ VB, to contain both vertices x and y, but not some bias vertex
b of {x, y} that happened not to label any of C’s vertices. In such cases, H is not a sandwich

4

Figure 3: Counterexample 1 (to Lemma 4 [9])

homogeneous set, despite the fact that C is an ESCC. The bias graph in Figure 3(b) illustrates
it. Although vertices 1 and 2 do appear in the labels of some vertices in the ESCC (on the left
of the dashed line), the very vertex [1, 2] ∈ VB is not itself in this ESCC. That is why vertices
[1, 8], [2, 8] ∈ VB, which are respectively incident to edges ([1, 2], [1, 8]) and ([1, 2], [2, 8]) are not
seen by the ESCC, therefore preventing vertex 8 from taking part in H, contrarily to what Tang
et al. may have expected it to. (Notice that vertex 8 is a bias vertex of {1, 2} and, consequently, of

5

H ⊃ {1, 2}, once H + {8}).
It is true that the HSSP instance in Figure 3(a) does have some sandwich homogeneous sets,

although set H = {1, 2, . . . , 7}, which might possibly have been returned by the BGC algorithm,
is not among them. (E.g. set {1, 8} is a homogeneous set of sandwich graph GS(V,ES), where
ES = E1 ∪ {(3, 8)}. Interesting enough, Figure 4(a) shows an instance which does not admit any
sandwich homogeneous sets at all. Still its bias graph GB, shown in Figure 4(b), has two proper
ESCCs, which causes the BGC algorithm to incorrectly answer yes. (In Figure 4(b), we removed the
commas from all vertex labels in order to save some space.) Vertex S (resp. S′) condensates GB’s
induced subgraph with vertex set {1, 2, . . . , 7} (resp. {1′, 2′, . . . , 7′}). S and S′ are both isomorphic
to the ESCC on the left of the dashed line in Figure 3(b), which grants they are still strongly
connected. Also, there are not any outgoing edges from neither S nor S′. (This is highlighted,
in the figure, by means of three big arrowheads towards both S and S′). The bold edges in the
leftmost half of the figure (and their counterparts in the other half, for the graph is noticeably
symmetrical) stress the existence of a path from every GB’s vertex v /∈ S ∪S′ to one of the ESCCs
S or S′. This clearly prevents the existence of ESCCs other than S and S′, in GB. Thus, being the
only ESCCs in GB, S and S′ are the only possible choices in line 2 of the BGC algorithm. However,
neither S nor S′ can be associated to any sandwich homogeneous sets whatsoever (in fact, there
does not exist any!), thence an incorrect answer is inevitable.

Lemma 5. [9] If graphs (G1, G2) admit a sandwich homogeneous set, then the BGC algorithm can
find one.

Unfortunately, this is not correct either. Figure 5(a) illustrates the pair G1(V,E1), G2(V,E2),
which has sandwich homogeneous set H = {1, 2, . . . , 9, 1′, 2′, . . . , 9′} (and no other). However, this
sandwich homogeneous set simply cannot be found by the BGC algorithm, for it is not associated
with any of the two existing ESCCs in the bias graph of (G1, G2). The point is that it is neither suf-
ficient (as we saw in the refutation of Lemma 4) nor necessary that a set of vertices in GB constitute
an end strongly connected component in order to be associated with a sandwich homogeneous set.
Figure 5(b) shows the bias graph GB(VB, EB) of input instance in Figure 5(a), which has 210 ver-
tices and 1684 edges. For obvious reasons, its graphic representation is rather condensed here. The
vertex labelled K comprises a 153-vertex induced subgraph of GB’s that is isomorphic to the whole
bias graph in Figure 4(a) and holds all vertices [x, y] ∈ VB such that x, y ∈ {1, 2, . . . , 9, 1′, 2′, . . . , 9′}.
(To save space, all commas in the vertices’ labels were again suppressed.)

We know already that there are two (and only two) ESCCs inside K, namely S and S′, which
happen to be the only ESCCs in the whole GB. This can be easily verified by noticing that (i)
there are not any outgoing edges leaving K and (ii) there is a path to K from each and every
vertex outside K. Again, because of the huge number of edges in this bias graph, we have wrapped
similar groups of vertices in three bounding boxes with 17 vertices each. An edge that leaves (resp.
reaches) one of these boxes towards (resp. coming from) a vertex v stands for 17 converging (resp.
diverging) edges towards (resp. coming from) v, one from (resp. to) each vertex inside the origin
box. Irrelevant edges have not been drawn.

In this case, the BGC algorithm would certainly answer yes, giving one of the two fake sandwich
homogeneous sets F = {1, 2, . . . , 7} or F ′ = {1′, 2′, . . . , 7′}, associated with S and S′, respectively.
It is easy to see that vertices 8 and 8′ forbid them to be sandwich homogeneous sets, invalidating
such answers. More than that, this instance’s one and only sandwich homogeneous set H cannot
be found by the BGC algorithm. Recall that K stands for the induced subgraph of GB that holds
all vertices [x, y] such that x, y ∈ H. In spite of being an end subgraph of GB (i.e. a subgraph

6

Figure 4: Counterexample 2 (to Lemma 4 [9])

7

that does not have any outgoing edges), K is not strongly connected, hence cannot be found by
Tarjan’s SCC-partitioning method. However, it is easy to see that H is indeed a homogeneous set
of sandwich graph GS which contains the (mandatory) edges in E1 plus edge (A, 9) ∈ E2.

4 Conclusion

This paper presented some counterexamples which invalidate the (so far) best algorithm for the
Homogeneous Set Sandwich Problem. A quite natural step would certainly be to question the
minimality of Counterexample 1. The answer is yes. It can be shown that any ESCC which might
not be associated with a sandwich homogeneous set has to be labelled by vertices of a set H ⊂ V
with cardinality at least 7. As long as an extra (bias) vertex is required in V \ H, we have that
any suchlike counterexamples to Tang et al.’s Claim 3 must have at least 8 input vertices – as does
Counterexample 1.

References

[1] M. R. Cerioli, M. R. Everett, C. M. H. Figueiredo, and S. Klein, The homogeneous set sandwich
problem, Information Processing Letters 67 (1998), 31–35.

[2] A. Cournier, Sur quelques algorithmes de décomposition de graphes, Ph.D. thesis, Université
Montpellier II, 1993.

[3] C. M. H. Figueiredo and V. G. P. Sá, A new upper bound for the homogeneous set sandwich
problem, Tech. Report ES-628/04, COPPE/Sistemas, Universidade Federal do Rio de Janeiro,
2004.

[4] M. R. Garey and D. S. Johnson, Computers and intractability, a guide to the theory of np-
completeness, pp. 198–199, Freeman, San Francisco, 1979.

[5] R. M. McConnel and J. Spinrad, Modular decomposition and transitive orientations, Discrete
Math. 201 (1999), 189–241.

[6] J. H. Muller and J. Spinrad, Incremental modular decomposition, J. ACM 36 (1989), 1–19.

[7] B. Reed, A semi-strong perfect graph theorem, Ph.D. thesis, School of Computer Science,
McGill University, Montreal, 1986.

[8] J. Spinrad, P4-trees and substitution decomposition, Discrete Appl. Math. 39 (1992), 263–291.

[9] S. Tang, F. Yeh, and Y. Wang, An efficient algorithm for solving the homogeneous set sandwich
problem, Information Processing Letters 77 (2001), 17–22.

[10] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972), no. 2,
146–160.

8

Figure 5: Counterexample 3 (to Lemma 5 [9])

9

