
Algorithms for the

Homogeneous Set Sandwich Problem∗

Celina M. H. de Figueiredo† Guilherme D. da Fonseca‡

Vińıcius G. P. de Sá§ Jeremy Spinrad¶

May 20, 2013

Abstract

A homogeneous set is a non-trivial module of a graph, i.e. a non-
empty, non-unitary, proper subset of a graph’s vertices such that all
its elements present exactly the same outer neighborhood. Given two
graphs G1(V,E1), G2(V,E2), the Homogeneous Set Sandwich Prob-
lem (HSSP) asks whether there exists a sandwich graph GS(V,ES),
E1 ⊆ ES ⊆ E2, which has a homogeneous set. In 2001, Tang et al. [15]
published an all-fast O(n242) algorithm which was recently proven
wrong [5], so that the HSSP’s known upper bound would have been
reset thereafter at former O(n4) determined by Cerioli et al. [1] in 1998.
We present, notwithstanding, new deterministic algorithms which have
it established at O(n3 log m

n). We give as well two even faster O(n3)
randomized algorithms, whose simplicity might lend them didactic use-
fulness. We believe that, besides providing efficient easy-to-implement
procedures to solve it, the study of these new approaches allows a fairly
thorough understanding of the problem.

Keywords: analysis of algorithms and problem complexity, graph
theory, graph algorithms, sandwich problem, homogeneous set

1 Introduction

A graph GS(V,ES) is said to be a sandwich graph of graphs G1(V,E1),
G2(V,E2) if and only if E1 ⊆ ES ⊆ E2.

∗This is a manuscript by the authors. The final article was published by Springer with
DOI number 10.1007/s00453-005-1198-2.
†celina@cos.ufrj.br, Univ. Federal do Rio de Janeiro, Brazil
‡fonseca@cs.umd.edu, Univ. of Maryland, USA
§vigusmao@gmail.com, Univ. Federal do Rio de Janeiro, Brazil (corresponding author)
¶spin@vuse.vanderbilt.edu, Vanderbilt Univ., USA

1

A sandwich problem for property Π asks whether there exists a sandwich
graph (of a given pair of graphs) which has the desired property Π [6].

A homogeneous set H for a graph G(V,E) is a subset of V such that
1 < |H| < |V | and for all v ∈ V \ H, either (v, h) ∈ E for all h ∈ H or
(v, h) /∈ E for all h ∈ H.

Given two graphs G1(V,E1), G2(V,E2) such that E1 ⊆ E2, the Homoge-
neous Set Sandwich Problem (HSSP) asks whether there exists a sandwich
graph GS(V,ES) of (G1, G2) which contains a homogeneous set. If so, such
a homogeneous set is called a sandwich homogeneous set (SHS) of pair
(G1, G2).

Graph sandwich problems were first defined in the context of Computa-
tional Biology and have attracted much attention ever since. They also arise,
in many cases, as a generalization of recognition problems [3, 7, 8]. Promi-
nent applications include Physical Mapping of DNA, Phylogenetic Trees,
Temporal Reasoning and Sparse Systems of Linear Equations, to name just
a few [6].

The importance of homogeneous sets in the context of graph decompo-
sition has been well acknowledged, specially in the perfect graphs field [9].

It is not always straightforward to enable a standard recognition algo-
rithm to handle efficiently the generalized sandwich version of a problem,
as the number of sandwich graphs of a given pair G1(V,E1), G2(V,E2) is
exponential in the cardinality of E2 \E1. This seems to be the case with the
HSSP. Despite the existence of linear-time algorithms which find homoge-
neous sets in a single graph [2, 10, 11, 12, 14], the known HSSP algorithms
are considerably less efficient.

The first polynomial-time algorithm for this problem was presented by
Cerioli et al. [1], which set HSSP’s upper bound at their algorithm’s O(n4)
time complexity. We refer to that algorithm as the Exhaustive Envelopments
algorithm (EE algorithm, for short). A few years later, Tang et al. [15] tai-
lored an interesting algorithm which would have largely diminished HSSP’s
upper bound. That algorithm, referred to as the Bias Graph Components
algorithm (BGC, for short), was however proved incorrect in [5, 13]. As a
consequence, the most efficient algorithm for the HSSP would have turned
back to be the former EE algorithm presented in [1], resetting HSSP’s up-
per bound at O(n4). A careful study of the underlying ideas contained in
both [1] and [15], though, has led us to the development of a series of faster
algorithms.

Throughout this paper, we denote the number of vertices in the input
graphs by n, the number of edges in graph Gi by mi and the number of
edges not in Gi by mi. 4i and 4i stand for the maximum vertex degree of
Gi and Gi, respectively, where Gi is Gi’s complement.

The terms mandatory edges and forbidden edges are used, in the context
of sandwich problems, to designate the edges in G1 and those not in G2,
respectively, reminding that every sandwich graph of (G1, G2) must contain

2

the former but not the latter. Also, we denote N1(v) = {x ∈ V | (x, v) ∈ E1}
as the set of mandatory neighbors of vertex v, and N2(v) = {x ∈ V | (x, v) /∈
E2} as the set of forbidden neighbors of v.

This paper is organized as follows:
Section 2 presents the common core of all HSSP algorithms known so

far1: the O(n2) Bias Envelopment procedure, introduced in [1]. Actually,
we show that its computing time can be bounded by O(m1 +m2), which is
somewhat tighter. The section ends with a short description of Cerioli et
al.’s O(n4) EE algorithm [1], so to say the basis of all others.

In spite of the counterexamples given in [5, 13], which have shown
the hopelessness of any simple corrective attempts, Tang et al.’s algorithm
[15] holds the unquestionable merit of having introduced the so-called bias
graph, an auxiliary digraph which has proved rather useful in fastening
some of the new envelopment-based algorithms presented herein. For this
reason, Section 3 briefly revisits the BGC algorithm, depicting the bias
graph and its usefulness. Additionally, we disclose (in Appendix 2) a faster
O(n ·min{m1,m2}) way of obtaining it.

We introduce, in Section 4, our first new algorithm, the O(m1m2) Two-
Phase algorithm. It is not altogether original, it must be said, for it does
employ Tang et al.’s fine bias graph concept — and still it bears essentially
on the Bias Envelopment procedure.

Most algorithms introduced in this paper are actually based on a varia-
tion of the Bias Envelopment procedure which we call the Incomplete Bias
Envelopment, to the study of which Section 5 is dedicated.

The Incomplete Bias Envelopment, along with the rather powerful bal-
ancing technique, gave rise to an O(n3.5) algorithm referred to as the Bal-
anced Subsets algorithm, which is introduced in Section 6.

Section 7 is devoted to a fast, randomized Monte Carlo algorithm, which
solves the HSSP in O(n3) time within whichever desired error ratio. As
often happens with randomized algorithms, its idea is very simple and so is
its implementation — but its analysis is not quite so. Indeed, it is the only
moment in the whole paper where a few, somewhat dull algebraic efforts
were called for.

There follows Section 8, which brings about the Harmonic Series algo-
rithm, whose O(n3 log n) time complexity makes it more efficient than all
previously known deterministic others.

In Section 9 we introduce the concept of enemy vertices, fundamental to
the construction of all remaining algorithms.

Section 10 presents anotherO(n3 log n) deterministic algorithm, the Grow-
ing Cliques algorithm. It is a little less simple than the Harmonic Series
discussed in Section 8, but it is — by some constant factor — faster. Be-

1As a matter of fact, Tang et al.’s BGC algorithm [15] was the only one which did not
employ it anyhow.

3

sides, it entails the basis for the understanding of the next-coming Las Vegas
algorithm.

The algorithm that comes next is a randomized one which follows the
Las Vegas standard of always giving the correct answer within some deter-
ministically calculated expected time. Its simplicity, besides an expected
time of O(n3), makes it almost unsurpassable, for the time being, as HSSP’s
best practical choice. Section 11 presents its description and analysis.

The last but not least contribution of this paper is the O(n3 log m
n) deter-

ministic Quick Fill algorithm covered by Section 12, which sets the current
upper bound for the HSSP.

Finally, Section 13 allows the practical comparison of all HSSP algo-
rithms by reporting some relevant experimental results. It helps to deepen
one’s understanding of each algorithms’ behavior, once it makes it possible
to verify how each algorithm’s theoretical time complexity matches with the
practical computing time it demands to handle inputs of different sizes.

2 Bias Envelopment

Tang et al. [15] assigned the term bias set of a vertex subset H ⊂ V to the set
B(H) of vertices b /∈ H such that, for some vi, vj ∈ H, there hold (b, vi) ∈ E1

(i.e. there is at least one mandatory edge between b and some vi ∈ H) and
(b, vj) /∈ E2 (i.e. there is also at least one forbidden edge between b and some
vj ∈ H). Such vertices b ∈ B(H) are called bias vertices of H.

The following theorem, whose proof is all the most intuitive, is the raison
d’être of the procedure on which the current section is meant to focus on.

Theorem 1. [1] The set H ⊂ V, |H| ≥ 2, is a sandwich homogeneous set
of (G1, G2) if and only if its bias set B(H) is the empty set.

It comes from Theorem 1 that any SHS containing H ⊂ V must also
contain B(H). This requirement gave rise to a procedure, in [1], which we
refer to as Bias Envelopment.

The Bias Envelopment aims at determining whether or not the input
instance admits a SHS which contains a given set of vertices. Starting from
a given initial SHS candidate H1 ⊂ V , the procedure successively computes
Hq = Hq−1 ∪ B(Hq−1) until either (i) B(Hq) = ∅, whereupon Hq is a SHS
and it answers yes, or else (ii) Hq∪B(Hq) = V , when its resulting no answer
will mean there is no SHS containing H1.

Figure 1 shows the pseudo-code for the Bias Envelopment procedure.
The Bias Envelopment procedure is sufficient to show that the HSSP

is polynomially solvable. Indeed, the idea of Cerioli et al.’s Exhaustive
Envelopments algorithm [1] is that of simply running one Bias Envelopment
for each of the Θ(n2) pairs of the input vertices, as illustrated by Figure 2.

4

Bias Envelopment (G1(V,E1), G2(V,E2), H1)

1. H ← H1

2. while |H| < |V | do
2.1. if B(H) = ∅

return yes. //a SHS was found: H.
2.2. else

H ← H ∪B(H)
3. return no. //there are no SHSs containing H1.

Figure 1: The Bias Envelopment procedure

Exhaustive Envelopments HSSP Algorithm (G1(V,E1), G2(V,E2))

1. for each pair of vertices {x, y} ⊂ V do
1.1. if Bias Envelopment (G1, G2, {x, y}) = yes

return yes.
2. return no.

Figure 2: The Exhaustive Envelopments algorithm [1]

Since, by definition, it is not possible that there be a SHS with less than
two vertices, this strategy clearly works.

The trickiest contribution found in [1] is actually the way they achieve
a quadratic running time for each Bias Envelopment. As the determination
of a bias set B(Hq) from scratch would demand O(n2) time, and because it
is possible that the size of the candidate set grows slowly (even on a single
increment basis), an entire Bias Envelopment would consume O(n3) time.
However, granted some dynamically maintained auxiliary sets are used [1],
each bias set B(Hq) shall not be naively obtained from scratch, but from
a constant number of unions, differences and intersections of sets, which
update B(Hq−1) instead. This way, each Bias Envelopment procedure needs
only O(n2) time to run in its entirety, yielding an overall O(n2 · n2) = O(n4)
time complexity for the whole EE algorithm.

Actually, we show that there is still a faster way to run the Bias Envel-
opment procedure, whose O(m1 + m2) computing time not only will play
an essential role in the complexity analysis of one of new algorithms stud-
ied herein but also gives a tighter bound for the EE algorithm itself at
O
(
n2(m1 +m2)

)
. Its technical details can be found in Appendix 1.

5

Bias Graph Components HSSP Algorithm (G1(V,E1), G2(V,E2))

1. Construct the bias graph GB of (G1, G2).
2. Find an end strongly connected component P of GB.
3. Let H denote the set of vertices in V that label the vertices in P .
4. if H 6= V

return yes. //H is a SHS.
5. return no.

Figure 3: The Bias Graph Components algorithm [15]

3 Bias Graph

Tang et al. [15] used the bias relations introduced in Section 2 in order to
construct an auxiliary directed graph which turned out to be an important
piece in the study of the HSSP. Unfortunately, the algorithm they created,
based on the so-called bias graph, happened to be incorrect [5, 13].

The idea behind the bias graph is to exhibit at once the input vertices’
bias relationships, allowing interdependent vertices to be quickly grouped in
a number of disjoint sets, some of which likely to be associated with SHSs.

The bias graph GB(VB, EB) of a pair of graphs G1(V,E1), G2(V,E2) has
vertex set VB = {[x, y] | x, y ∈ V, x 6= y} and there are two outgoing edges
from vertex [x, y] to vertices [x, b] and [y, b] in GB if and only if vertex b is
a bias vertex of set {x, y} ⊂ V . Notice that vertices [x, y] and [y, x] in GB

are the same.
As pointed out in [15], the bias graph does not need more than O(n242)

time to be obtained. This bound — which dominates the complexity of the
whole BGC algorithm — is, however, not tight. Please refer to Appendix 2
for an O(n ·min{m1,m2}) bias graph construction method.

The BGC algorithm proposed in [15] used the bias graph in the follow-
ing way: once it had been constructed, the algorithm would run Tarjan’s
method [16] to find all its strongly connected components and then would
look for an end strongly connected component (ESCC) among them, i.e. a
strongly connected component with no outgoing edges. If only one ESCC
was found and it embraced all input vertices (as part of its vertices’ labels),
the algorithm would return no. Otherwise, the algorithm would translate
one of the bias graph’s ESCCs, say component P , into the set H ⊂ V of
input vertices that appeared in the labels of P ’s vertices. Then it would
return yes, for H would allegedly be a SHS.

The summarized steps of the BGC algorithm are shown in Figure 3.

Claim 2. [15] The BGC algorithm correctly solves the HSSP.

6

Figure 4: Counterexample to Claim 2

The above claim is not correct. Although Figure 4 recalls a sufficient
counterexample instance thereof, one should refer to [5] for its detailed refu-
tation.

Theorem 3 that follows employs Tang et al.’s bias graph in a correct
SHS characterization, supporting two of the new HSSP algorithms in this
paper: the Two-Phase, given in the following Section 4; and the Quick Fill,
in Section 12 later on.

Let GB(VB, EB) be the bias graph of input graphs G1(V,E1), G2(V,E2).
A subset K ⊆ VB is said to be a pair-closed set if and only if there do
not exist two vertices x, y ∈ V , among those which label K’s vertices, such
that vertex [x, y] is not an element of K. The set Q = {[1, 2], [1, 3], [2, 3]}
is a pair-closed set. The set Q′ = {[1, 2], [1, 3], [1, 4], [2, 3], [2, 4]} is not pair-
closed, for vertices 3 and 4 appear in the label of some vertices in Q′ but
[3, 4] /∈ Q′.

Theorem 3. A set H ⊂ V , |H| ≥ 2, is a sandwich homogeneous set of
graphs G1(V,E1), G2(V,E2) if and only if the pair-closed set K = {[x, y] | x, y ∈
H} ⊂ VB induce an end subgraph in the bias graph GB of (G1, G2).

Proof. Let K ⊂ VB be the pair-closed set that holds all vertices [v, w] ∈ VB
such that v, w ∈ H ⊂ V , and only these. Assume, by hypothesis, that K

7

induces an end subgraph in GB (not necessarily strongly connected). Now
suppose, by contradiction, that H is not a SHS of (G1, G2). Then, H must
have a bias vertex b ∈ V \ H, which means that there exists a mandatory
edge between b and some vertex h1 ∈ H and also a forbidden edge between
b and some other vertex h2 ∈ H. But this implies that vertex [h1, h2] ∈ K
has outgoing edges to vertices [h1, b] and [h2, b], which cannot be in K. This
is a contradiction, for K induces an end subgraph (i.e. one which does not
have any outgoing edges). Conversely, if H is a SHS, then it does not have
any bias vertices. Consequently, if a pair of vertices h1, h2 ∈ H has a bias
vertex b then b also belongs to H. (Otherwise, b would be a bias vertex of
H.) Once K is pair-closed in the vertices of H, vertices [h1, b], [h2, b] ∈ VB
must belong to K, so that the subgraph of GB induced by K does not have
any outgoing edges.

4 The Two-Phase algorithm

Theorem 3 does not lead directly to an efficient algorithm for the HSSP, for
it is not known of any quick means of finding pair-closed sets which induce
end subgraphs in the bias graph. Corollary 4, however, brings about the
central inspiration for the algorithm that follows.

Corollary 4. If H ⊂ V is a sandwich homogeneous set of graphs G1(V,E1),
G2(V,E2), then either the subgraph GB〈K〉, induced by the pair-closed set
K = {[x, y] | x, y ∈ H} ⊂ VB in the bias graph GB(VB, EB) of (G1, G2),
is itself an end strongly connected component or else it contains, properly,
some end strongly connected component of GB.

Proof. From Theorem 3, we know that GB〈K〉 is an end subgraph of GB. If
it is strongly connected, then the statement holds trivially. If it is not,
then there must exist two vertices x, y ∈ GB〈K〉 such that there is no
path from x to y. The set R(x) of all vertices that are reachable from
x certainly induces an end subgraph, for it cannot contain any outgoing
edges to vertices u /∈ R(x), otherwise x would reach u. Also, y /∈ R(x), so
that R(x) is a proper subgraph of GB〈K〉. Thus, the fact that GB〈K〉 is
not strongly connected implies that it contains some end, proper subgraph
GB〈K ′〉. This subgraph, in turn, must either be itself strongly connected
(which would end the proof) or contain an end, proper subgraph GB〈K ′′〉,
and so on and so forth. As GB is finite, this ought to stop at some point,
whereupon we will finally have found an end subgraph of GB〈K〉 which is
strongly connected.

The new algorithm we propose is rather simple. It can be regarded as
either (i) an improved version of the EE algorithm which just does not run
the Bias Envelopment on all Θ(n2) input vertices’ pairs, but instead on a
sufficient, shorter number of initial candidates; or (ii) an improved version

8

Two Phase HSSP Algorithm (G1(V,E1), G2(V,E2))

1. Construct the bias graph GB of (G1, G2).
2. for each end strongly connected component Pi of GB do
2.1. Let Hi be the set of vertices in V that label the vertices in Pi.
2.2. if Bias Envelopment (G1, G2, Hi) = yes

return yes.
3. return no.

Figure 5: The Two-Phase algorithm

of the BGC algorithm, which only does not hasten to associate the bias
graph’s ESCCs with (perhaps false) SHSs of the input graphs, but instead
into subsets of the input vertices, among which at least one is meant to be
contained (properly or not) in a SHS, in case there exists any.

As it comprises two totally distinct phases, and in the lack of a better
name, we refer to it as the Two-Phase algorithm (2P, for short).

The first phase of the 2P algorithm builds the bias graph GB(VB, EB)
of the input instance and locates all its end strongly connected components
Pi ⊆ GB. Each Pi is then used to determine the subset Hi ⊆ V of the input
vertices such that Hi contains all vertices which appear in some vertex label
in Pi.

Its second phase simply runs the Bias Envelopment procedure taking
each of the subsets Hi as the initial candidate.

The algorithm returns (i) yes, in case any a SHS H ⊇ Hi exists, for some
i; or (ii) no in case no subset Hi happens to be contained in a SHS of the
input instance.

Figure 5 depicts the mechanics of the Two-Phase algorithm.

4.1 Proof of correctness / completeness

The soundness of the 2P algorithm comes directly from Corollary 4 and
from the fact that the Bias Envelopment procedure correctly determines
whether there exists a SHS which contains a given subset of the input ver-
tices. Let G1(V,E1), G2(V,E2) be the input graphs for the 2P algorithm,
and GB(VB, EB) their bias graph. First of all, if the algorithm returns yes,
then a SHS H must have been found by a Bias Envelopment call, which
grants its validity. Moreover, if the pair (G1, G2) admits a SHS H, then, by
Corollary 4, the subgraph GB〈K〉 which is induced in GB by the pair-closed
subset K ⊂ VB (comprising vertices [x, y] labelled by all x, y ∈ H, and only
these) contains an ESCC of GB, say GB〈Pi〉. If GB〈Pi〉 = GB〈K〉, then
the set H itself is the initial candidate of some Bias Envelopment iteration

9

(lines 2.1 and 2.2, in Figure 5). As its bias set is empty, the algorithm
discovers that it is a SHS of (G1, G2) and stops. If, on the other hand,
GB〈Pi〉 (GB〈K〉, then a subset Hi ⊆ H is the initial candidate of some
Bias Envelopment iteration. In this case, as there exists a SHS which con-
tains Hi, namely H, the Bias Envelopment call which starts with candidate
Hi certainly answers yes.

4.2 Complexity analysis

The time complexity of all steps in the first phase is bounded by the number
of edges in the bias graph. Thus, it can be run in O (n ·min{m1,m2}) time.
(Please refer to Appendix 2 for details on the cardinalities and construction
of the bias graph.)

The second phase of the 2P algorithm runs several Bias Envelopments
(one for each ESCC of the bias graph, in the worst case). The time demanded
by each Bias Envelopment is O(m1 +m2), as one can find in Section 2 (with
further details in Appendix 1). So the question is, how many times, in the
worst case, does the Bias Envelopment procedure have to be run? That is,
what is the maximum size of a sequence of ESCC-associated input vertices’
subsets that fail to be contained in any SHSs of (G1, G2)?

The answer comes straight from Theorem 3, which grants that all end
subgraphs of GB whose vertices perform a pair-closed set are associated
to a SHS. Consequently, the ESCC GB〈Pi〉, whose associated set Hi ∈ V
fails to be contained in any SHSs, must have been induced by a non-pair-
closed vertex set Pi ⊂ VB. The worst-case number of Bias Envelopments is
therefore bounded by the maximum number of ESCCs, in the bias graph,
that might be induced by non-pair-closed sets of vertices.

Lemma 5 establishes an upper bound to such ESCCs and allows us to
determine the total time complexity of the 2P algorithm.

Lemma 5. In a bias graph, there are at most O(min{m1,m2}) end strongly
connected components induced by non-pair-closed vertex sets.

Proof. LetGB(VB, EB) be the bias graph of graphsG1(V,E1), G2(V,E2) and
let Pi ⊂ VB be a non-pair-closed vertex set that induces ESCCGB〈Pi〉 inGB.
Now let [x, y] be a bias graph vertex that belongs to Pi. Vertex [x, y] neces-
sarily presents an outgoing edge, for GB〈Pi〉 is strongly connected. (Clearly,
Pi\{[x, y]} is nonempty, for {[x, y]} is pair-closed, whereas Pi, by hypothesis,
is not.) Let ([x, y], [x, t]) be an edge in GB〈Pi〉. Vertex t ∈ V is therefore a
bias vertex of set {x, y} ⊂ V \{t}, so that edge (x, t) is mandatory and edge
(y, t) is forbidden (or vice-versa). Without loss of generality, let edge (x, t)
be the mandatory one. We define a function lM (P) that associates ESCC
GB〈P 〉 with such a mandatory edge (i.e. a mandatory edge of the input
instance which is necessary for the existence of some bias relationship that
appears inside GB〈P 〉). This chosen mandatory edge, returned by lM (P),

10

will stand for GB〈P 〉’s label. In the current example, “(x, t)” is a possible la-
bel for GB〈Pi〉. Notice that no other ESCC GB〈Pj〉 can possibly be assigned
the same label “(x, t)”. In other words, j 6= i ⇒ lM (Pj) 6= lM (Pi). Other-
wise, because of the way a label is chosen by lM , there would necessarily be
an edge ([x,w], [x, t]) — or ([w, t], [x, t]) — in GB〈Pj〉, for some w ∈ V . Be-
cause GB〈Pj〉 is an ESCC, [x, t] must be in GB〈Pj〉. But this is not possible,
for [x, t] belongs to GB〈Pi〉 and any two strongly connected components in a
digraph have an empty intersection. Thus, labelling function lM is injective,
which implies that the number of ESCCs that are induced by non-pair-closed
vertex sets is bounded by the number m1 of mandatory edges. We reason
that an analogous injective labelling function lF , which only assigns to each
non-pair-closed ESCC some forbidden input edge instead, implies that the
number of such non-pair-closed ESCCs is also bounded by the number m2

of forbidden edges.

The time complexity of the second phase of the 2P algorithm is therefore
O(min{m1,m2}) times the O(m1 + m2) complexity of each Bias Envelop-
ment, which yields O ((m1 +m2) ·min{m1,m2}).

We remark that the time complexity of the first phase —
O(n ·min{m1,m2}) — is dominated by that of the second’s, since (m1 +m2)
is clearly Ω(n). Otherwise, both G1 and the complement of G2 would be
disconnected, characterizing trivial HSSP instances (for any vertex v ∈ V
which is isolated either in G1 or in the complement of G2 gives the SHS
V \ {v} effortlessly).

Finally, we rewrite the time complexity of the whole 2P algorithm as

O ((m1 +m2) ·min{m1,m2}) =

O (max{m1,m2} ·min{m1,m2}) =

O (m1m2) .

5 Incomplete Bias Envelopment

Before we step further into the next HSSP algorithms, we will introduce a
variation of the Bias Envelopment procedure on which are based most of
the forthcoming algorithms. We call it the Incomplete Bias Envelopment.

The input of the Incomplete Bias Envelopment comprises not only a pair
of graphs G1(V,E1), G2(V,E2) and a SHS candidate H1 ⊂ V but also a stop
parameter k ≤ n. The only difference between this incomplete version and
the former, complete one, is that now, whenever the size |Hq| of the current
candidate becomes greater than k, the envelopment stops prematurely with
a no answer. Notice that such a no answer from the Incomplete Bias En-
velopment with parameter k means that H1 is not contained in any SHSs
with k vertices or less.

11

Incomplete Bias Envelopment (G1(V,E1), G2(V,E2), H1, k)

1. H ← H1

2. while |H| ≤ min{k, |V | − 1} do
2.1. if B(H) = ∅

return yes. //a SHS was found: H.
2.2. else

H ← H ∪B(H)
3. return no. //there are no SHSs with k vertices

//or less which contain H1.

Figure 6: The Incomplete Bias Envelopment procedure

The Incomplete Bias Envelopment clearly generalizes its complete ver-
sion, as a normal (complete) Bias Envelopment is equivalent to an Incom-
plete Bias Envelopment with parameter k = n− 1.

The pseudo-code for the Incomplete Bias Envelopment is in Figure 6.
Using the same data structures as in [1], the Incomplete Bias Envel-

opment runs in O(nk) time. If, on the other hand, the optimized Bias
Envelopment method given in Appendix 1 is adapted to allow incomplete
envelopments, an O(min{m1, k41}+min{m2, k42}) bound can be achieved.
Nevertheless, this latter bound is somewhat hard to work with and will not
be taken into account in the analysis of the algorithms that employ the In-
complete Bias Envelopment in the remainder of this paper. The simpler —
albeit less tight — O(nk) suffices for our purposes and will be onwards used
instead.

6 The Balanced Subsets Algorithm

The algorithm we propose in this section, which will be referred to as the
Balanced Subsets algorithm (BS, for short), is quite similar to the EE al-
gorithm, in the sense that it submits each of the input vertices’ pairs to
the envelopment process. The only difference is that this new algorithm
establishes a particular order in which the vertex pairs are chosen, in such
a way that it can benefit, at a certain point, from unsuccessful envelop-
ments that took place prior to it. After some unsuccessful envelopments, a
number of vertex pairs have been found not to be contained in any SHSs.
This knowledge is then taken into consideration by the algorithm, which will
stop further envelopments earlier by means of Incomplete Bias Envelopment
calls, saving relevant time without loss of completeness.

Figure 7 illustrates the pseudo-code for the Balanced Subsets algorithm.

12

Balanced Subsets HSSP Algorithm (G1(V,E1), G2(V,E2))

1. Label all vertices in V from v1 to vn.
2. Create d

√
n e empty sets Ci.

3. for each vertex vj ∈ V do
3.1. Cj modulod

√
n e ← Cj modulod

√
n e ∪ {vj}.

4. for each pair of vertices {x, y} in the same subset Ci do
4.1. if Bias Envelopment (G1, G2, {x, y}) = yes

return yes.
5. for each pair of vertices {x, y} not in the same subset Ci do
5.1. if Incomplete Bias Envelopment (G1, G2, {x, y}, d

√
n e) = yes

return yes.
6. return no.

Figure 7: The Balanced Subsets algorithm

When the algorithm starts, it partitions all n vertices of the input graphs
into d

√
n e disjoint subsets Ci of size O(

√
n), each. Then all pairs of vertices

will be submitted to Bias Envelopment in two distinct phases: in the first
phase (lines 4 and 4.1, in Figure 7), all those pairs consisting of vertices
from the same subset Ci are bias-enveloped (and only those); in the second
phase (lines 5 and 5.1), all remaining pairs (i.e. those comprising vertices
that are not from the same subset Ci) are then bias-enveloped. In the end,
all possible vertex pairs will have been checked out as to belonging or not to
some SHS from the input instance, just like in the EE algorithm. The point
is: if all Bias Envelopments in the first phase fail to find a SHS, then the
input instance does not admit any SHSs which contain two vertices from
the same subset Ci. Thence, the maximum size of any possibly existing
SHS is d

√
n e (the number of subsets into which the input vertices had been

initially dispersed), which grants that all Bias Envelopments of the second
phase need not search for SHSs any larger. That is why Incomplete Bias
Envelopments with stop parameter k = d

√
n e can be safely used.

6.1 Proof of correctness / completeness

Theorem 6. The Balanced Subsets algorithm correctly answers whether or
not the HSSP input instance has a sandwich homogeneous set.

Proof. If the algorithm returns yes, then it has successfully found a set
H ⊂ V , with |H| ≥ 2, such that the bias set of H is empty. Thus, H is
indeed a valid SHS.

Now, suppose the input has a SHS H. If |H| > d
√
n e then there are

more vertices in H than subsets into which all input vertices were spread, in

13

the beginning of the algorithm (line 3.1). Thus, by the pigeon hole principle,
there must be two vertices x, y ∈ H which were assigned to the same subset
Ci. So, whenever {x, y} is submitted to Bias Envelopment (line 4.1), the
algorithm is doomed to find a SHS. On the other hand, if |H| ≤ d

√
n e, then

it is possible that H does not contain any two vertices from the same subset
Ci, which would cause all Bias Envelopments of the first phase to fail. In this
case, however, when a pair {x, y} ⊆ H happens to be bias-enveloped in line
5, the Incomplete Bias Envelopment is meant to be successful, for the size
of H is, by hypothesis, less than or equal its stop parameter k = d

√
n e.

6.2 Complexity analysis

As each subset Ci has O(n) pairs of vertices and there are O(
√
n) such

subsets, the number of pairs that are bias-enveloped in the first phase of the
algorithm is O(n

√
n). All Bias Envelopments, in this phase, are complete

and take O(n2) time to be executed, which yields a subtotal of O(n3.5) time
in the whole first phase.

The number of pairs that are only submitted to Bias Envelopment in the
second phase is O(n2) − O(n

√
n) = O(n2) pairs. Each Bias Envelopment

is, now, an Incomplete one with parameter k = d
√
n e. Because the time

complexity of each Incomplete Bias Envelopment with parameter k is O(nk),
the total time complexity of the whole second phase of the algorithm is
O(n3k) = O(n3.5).

Thus, the overall time complexity of the Balanced Subsets algorithm is
O(n3.5) +O(n3.5) = O(n3.5).

7 The Monte Carlo HSSP Algorithm

A yes-biased Monte Carlo algorithm for a decision problem is one which
always gives the right answer when it answers yes (a certificate is given),
whereas a no answer may be wrongly given (with probability no greater
than a fixed ε, however). In other words, it always answers no if the correct
answer is no (for it cannot create a false yes-certificate) and answers yes
with probability at least p = 1− ε whenever the correct answer is yes.

In order to gather some intuition, let us suppose the input has a SHS H
with h vertices or more.

What would be, in this case, the probability p1 that a random pair of
vertices {x, y} ∈ V is not contained in H? Clearly,

p1 ≤ 1− h(h− 1)

n(n− 1)
.

What about the probability pt that t random pairs of vertices fail to be

14

contained in H? It is easy to see that

pt ≤
(

1− h(h− 1)

n(n− 1)

)t

.

Now, still on the hypothesis that there exists a SHS H with at least h
vertices, what would be the probability pt that, after t Bias Envelopment
procedures have been run (starting from t randomly chosen pairs of vertices),
a SHS have been found? Again, it is quite simple to reach the following
expression, which will be vital to the forthcoming reasoning.

pt ≥ 1−
(

1− h(h− 1)

n(n− 1)

)t

. (1)

If, instead of obtaining the probability pt from the expression above,
we fix pt at some desired value p = 1 − ε, we will be able to calculate
the minimum integer value of ht (which, for simplicity, will denote h as
a function of t) that satisfies the inequality 1. This value ht is such that
the execution of t independent Bias Envelopment procedures (on t random
pairs) is sufficient to find a SHS of the input instance with probability at
least p, in case there exists any with ht vertices or more (see equation 2):

ht =

⌊
1 +

√
1 + 4(n2 − n)(1− (1− p)1/t)

2

⌋
. (2)

However, we want an algorithm that finds a SHS with some fixed proba-
bility p in case there exists any, no matter its size. As ht decreases with the
growth of t, the following question arises: how many random pairs do we
need to submit to Bias Envelopment in order to achieve that? The answer is
rather simple: the minimum integer t′ such that ht′ = 2, for 2 is the shortest
possible size of a SHS!

Determining t′ comes straightforwardly from equation 2 (please refer to
Subsection 7.2 for the detailed calculations):

t′ =
ln(1− p)

ln
(

1− 2
n(n−1)

) = Θ(n2). (3)

Once the number t′ of Bias Envelopment procedures that need to be
undertaken on randomly chosen pairs of vertices is Θ(n2) and the time
complexity of each Bias Envelopment is O(n2), so far we seem to have been
lead to an O(n4) randomized algorithm, which is all the most undesirable, for
we could already solve the problem deterministically with less asymptotical
effort (see, for example, the previous Section 6)!

But now we have come to a point where the incomplete version of the
Bias Envelopment procedure will play an important part as far as time
saving goes. We show that, by the time the t-th Bias Envelopment is run,

15

its incomplete version with stop parameter k = ht−1 serves exactly the same
purpose as its complete version would do.

Lemma 7. In order to find a SHS with probability p, in case there exists at
least one with ht vertices or more, the t-th Bias Envelopment does not need
to go further after the size of the candidate set has exceeded ht−1.

Proof. Two are the possibilities regarding the input: (i) there is a SHS with
more than ht−1 vertices; or (ii) there is no SHS with more than ht−1 vertices.

If (i) is true, then no more than t − 1 Bias Envelopments would even
be required to achieve that (by the definition of ht). Hence the t-th Bias
Envelopment can stop as early as it pleases.

If (ii) is the case, then an Incomplete Bias Envelopment with stop pa-
rameter k = ht−1 is meant to give the exact same answer as the complete
Bias Envelopment would, for there are no SHSs with more than ht−1 vertices
to be found (by hypothesis).

Whichever the case, thus, such an Incomplete Bias Envelopment is per-
fectly sufficient.

Now we can describe an efficient Monte Carlo algorithm which gives the
correct answer to the HSSP with probability at least p.

The algorithm’s idea is to run several Incomplete Bias Envelopment pro-
cedures on randomly chosen initial candidate sets (pairs of vertices). At each
iteration t of the algorithm we run an Incomplete Bias Envelopment with
stop parameter k = ht−1 and either it succeeds in finding a SHS (and the
algorithm stops with an yes answer) or else it aborts the current envel-
opment whenever the number of vertices in the SHS candidate exceeds the
ht−1 threshold. (In this case, Lemma 7 grants its applicability.) For the first
iteration, the stop parameter k is set to h0 = n − 1, as it will correspond
to a complete Bias Envelopment. At the end of each iteration, the value of
ht is then updated (see equation 2), which makes it progressively decrease
throughout the iterations until it reaches 2 (the minimum size allowed for
a homogeneous set), which necessarily happens after Θ(n2) iterations (see
equation 3).

The pseudo-code for this algorithm is in Figure 8.

7.1 Proof of correctness / completeness

Theorem 8. The Monte Carlo HSSP algorithm correctly answers whether
there exists a sandwich homogeneous set in the input graphs with probability
at least p.

Proof. If the algorithm returns yes, then it is the consequence of having
found a set H ⊂ V , with |H| ≥ 2, such that the bias set of H is empty,
which makes a valid SHS out of it. In other words, if the correct answer is
no then the algorithm gives a correct no answer with probability 1.

16

Monte Carlo HSSP Algorithm (G1(V,E1), G2(V,E2), p)

1. h← |V | − 1
2. t← 1
3. while h ≥ 2
3.1. Let (v1, v2) be a random pair of distinct vertices of V .
3.2. if Incomplete Bias Envelopment(G1, G2, {v1, v2}, h) = yes

return yes.

3.3. h← b(1 +
√

1 + 4(|V |2 − |V |)(1− (1− p)1/t))/2c
3.4. t← t+ 1
4. return no.

Figure 8: A yes-biased Monte Carlo algorithm for the HSSP

If the correct answer is yes, we want to show that it gives a correct
yes answer with probability at least p. Let h∗ be the size of the largest
SHS of the input instance. As h0 = n − 1 and the algorithm only answers
no after ht has lowered down to 2, there must exist an index d such that
hd ≤ h∗ ≤ hd−1. From the definition of ht we know that, on the hypothesis
that the input has a SHS with ht vertices or more, t Bias Envelopments are
sufficient to find one, with probability at least p. As, by hypothesis, there
is a SHS with h∗ ≥ hd vertices, then d independent Bias Envelopments are
sufficient to find a SHS with probability p. So, it is enough to show that this
quota of d Bias Envelopments is achieved. It is true that Incomplete Bias
Envelopments that stop before the candidate set has reached the size of h∗

cannot find a SHS with h∗ vertices. Nevertheless, the first d iterations alone
perform this minimum quota of Bias Envelopments. Because h∗ is the size
of the largest SHS, the fact of being incomplete simply does not matter for
these first d Bias Envelopments, none among which being allowed to stop
before the size of the candidate set has become larger than hd−1 ≥ h∗.

7.2 Complexity analysis

The first iteration of the algorithm runs the complete Bias Envelopment in
O(n2) time [1]. (Actually, a more precise bound is O(m1 + m2), as seen
in Section 2. However, as the complexity analysis of the Incomplete Bias
Envelopment does not benefit at all from allowing edge quantities, we opted,
for the sake of simplicity, to write time bounds only as functions of n.) The
remaining iterations take O(nht) time each. To analyze the time complexity
of the algorithm, we have to calculate

17

t′∑
t=1

O (nht−1) ,

where t′ is the number of iterations in the worst case.
The value of ht, obtained at the end of iteration t, is defined by equa-

tion 2. To calculate t′, we replace ht′ for 2 and have(
1− 2

n(n− 1)

)t′

= 1− p, finally reaching

t′ =
ln(1− p)

ln
(

1− 2
n(n−1)

) .
For 0 < x < 1, it is known that

ln(1− x) = −x− x2

2
− x3

3
− · · · .

Consequently,

t′ =
ln(1− p)

− 2
n(n−1) −

1
Θ(n4)

= Θ(n2).

Now, we will show that h(h−1)/n(n−1) ≥ h2/2n2. This result is useful
to simplify some calculations. We have

n

n− 1
· h− 1

h
· h

2

n2
=
h(h− 1)

n(n− 1)
, and

h− 1

h
· h

2

n2
≤ h(h− 1)

n(n− 1)
.

Since h ≥ 2,

h2

2n2
≤ h(h− 1)

n(n− 1)
.

To calculate the total time complexity, we replace h(h− 1)/n(n− 1) for
h2/2n2 and pt for the fixed value p in equation 1, and have(

1− h2

2n2

)t

≥ 1− p,

h2

2n2
≤ 1− (1− p)1/t, and

h ≤ Θ(n)
√

1− (1− p)1/t.

18

It is well known that

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · .

Consequently, for x > 1,

e1/x = 1 + 1/Θ(x).

Using this approximation, we have

h ≤ Θ(n)
√

1− (1 + 1/Θ(t)) = Θ(n)/Θ(
√
t).

The total time complexity of the algorithm is

Θ(n2)∑
t=1

O
(
nht
)

=

Θ(n2)∑
t=1

O(n2)

O(
√
t)

= O(n2)

Θ(n2)∑
t=1

1/O(
√
t).

Using elementary calculus, we have

O(n2)

Θ(n2)∑
t=1

1/O(
√
t) = O(n3),

which stands for the overall total time complexity of the Monte Carlo
HSSP algorithm.

8 The Harmonic Series algorithm

This section introduces a new algorithm for the HSSP (see Figure 9), named
the Harmonic Series (HS) algorithm due to its peculiar complexity analysis.

The main idea of the algorithm presented herein is pretty much the same
as in the previously seen EE (Section 2) and BS (Section 6) algorithms: to
submit each and every pair of input vertices {x, y} ⊂ V to Bias Envelopment
procedures in order to find out whether they are contained in a SHS of the
input graphs.

The common feature of both the HS algorithm which follows and the
Balanced Subsets algorithm given in Section 6 is the ability to benefit from
unsuccessful Bias Envelopments, differently from what happened in other
algorithms (e.g. EE and 2P algorithms), where the envelopments were totally
independent from one another.

The HS algorithm establishes a tricky order in which the vertex pairs
are examined, so that the cumulative knowledge brought up by earlier en-
velopments can be used to speed up later ones.

We define the n-circular distance cdn(x, y) between two numbers x, y ∈
{1, ..., n} as the number of edges in the minimum path from vertex vx
to vertex vy over an ordered cycle v1, v2, . . . , vn, v1 (e.g. cd8(1, 4) = 3,

19

Harmonic Series HSSP Algorithm (G1(V,E1), G2(V,E2))

1. for t = 1 to bn/2c do
1.1. for each {vi, vj} ⊂ V such that cdn(i, j) = t do
1.1.1. if Incomplete Bias Envelopment (G1, G2, {vi, vj}, bn/tc) = yes

return yes.
2. return no.

Figure 9: The Harmonic Series algorithm

cd8(1, 7) = 2). The n-circular distance between x and y can be easily ob-
tained by the following expression:

cdn(x, y) = min{x− y (modulo n), y − x (modulo n)}. (4)

Having indexed all input vertices as vi, with i ranging from 1 to n, we
say two vertices vi and vj are k-distant-labelled if and only if cdn(i, j) = k.
Clearly, two vertices can be at most bn/2c-distant labelled.

The HS algorithm proceeds as follows: the n(n − 1)/2 vertex pairs will
be submitted to Bias Envelopment in bn/2c turns with n pairs each. The
first turn submits to Bias Envelopment all pairs of 1-distant-labelled ver-
tices ({v1, v2}, {v2, v3}, . . . , {vn, v1}), the second turn submits all pairs of
2-distant-labelled vertices ({v1, v3}, {v2, v4}, . . . , {vn, v2}) and so on, with
further t-th turns always submitting to Bias Envelopment all n pairs of
t-distant-labelled input vertices.

The point is, by the time the n Bias Envelopments of the t-th turn will
take place, it is known already that no SHSs sets exist containing a pair of
vertices {vi, vj} such that cdn(i, j) < t (once all such pairs will have already
been unsuccessfully bias-enveloped in earlier turns). This knowledge bounds
the size of possibly existing SHSs in this turn at bn/tc. Consequently, all
Bias Envelopments in the t-th turn need not continue whenever the size of
the current candidate set has exceeded this bn/tc bound, which calls for
Incomplete Bias Envelopments with stop parameter k = bn/tc.

8.1 Proof of correctness / completeness

Theorem 9. The Harmonic Series algorithm correctly solves the HSSP.

Proof. Once again, if the algorithm returns yes, then it has successfully
found a set H ⊂ V , with 2 ≤ |H| < |V |, such that the bias set of H is empty
(Bias Envelopment yes-answer condition). Thus, H is a valid SHS.

Now, suppose the input has a SHS H. Let d = min{cdn(i, j) | vi, vj ∈ H}
stand for the minimum n-circular distance between any two vertex indexes

20

in H and let vr, vs ∈ H be two d-distant-labelled vertices. Now, suppose H
has more than bn/dc vertices. Then, by the pigeon hole principle, there must
be two vertices vx and vy such that cdn(x, y) < d. This is a contradiction,
for d is minimum. Hence, the cardinality of H is no larger than bn/dc. If
the algorithm still has not found any SHSs by the time {vr, vs} turns out
to be the initial candidate set (which must happen during the d-th turn of
Bias Envelopments), the Incomplete Bias Envelopment with stop parameter
k = bn/dc which will then take place is destined to find a SHS containing
vr and vs (for there is one, by hypothesis — H — with k vertices or less).
The algorithm, in this case, answers yes, as it was supposed to.

8.2 Complexity analysis

In the worst case, the algorithm performs bn/2c turns of n Incomplete Bias
Envelopments each. In the t-th turn, the stop parameter k of each Bias
Envelopment is set to bn/tc. As the time complexity of an Incomplete Bias
Envelopment with stop parameter k is O(nk), the complexity of the whole
t-th turn is n ·O (nbn/tc) = O(n3/t).

Thus, the overall time complexity of the whole Harmonic Series algo-
rithm is:

bn/2c∑
t=1

O

(
n3

t

)
= O

n3

O(n)∑
t=1

O

(
1

t

) = O
(
n3 log n

)
.

9 Enemies

The next new algorithm, presented in Section 10, is so to say smarter than
the Harmonic Series one (and in practice reasonably faster, despite sharing
the same asymptotical time complexity).

Before we focus on it, we introduce the definition of enemy vertices (or
simply enemies), for this very useful concept will be the ground basis of the
algorithm to come.

Let G1(V,E1), G2(V,E2) be the input instance of a HSSP. Two vertices
x, y are said to be enemies of each other if no sandwich homogeneous sets
exist containing both x and y.

We define the enmity graphs of (G1, G2) as graphs GN (V,EN) which
have the same vertices of the input graphs and where an edge (x, y) might
exist only if x and y are enemies.

A trivial enmity graph is one that is empty. It reveals a complete lack
of information about enmity relationships among the HSSP input vertices.
A final enmity graph, on the other hand, is one that reflects all enmity
relationships of the input graphs’ vertices. It clearly answers the HSSP,

21

Figure 10: Two enmity graphs during the HS algorithm

once any two vertices that are not adjacent (in the final enmity graph) must
be non-enemies, i.e. must be contained in some SHS of (G1, G2).

An enmity graph of a HSSP instance, thus, can be any sandwich graph of
its trivial and final enmity graphs; it is one which shows some (but perhaps
not all) of the existing enmity relationships among the instance’s pairs of
vertices. Lemma 10, which is given next, highlights the extreme usefulness
of enmity graphs.

(We recall that an independent set is a subset S of V which contains
only pairwise non-adjacent vertices.)

Lemma 10. Given an enmity graph GN of (G1, G2), the maximum size of
any SHS of (G1, G2) is bounded by the size of the maximum independent set
of GN .

Proof. Let d be the size of the maximum independent set of the enmity
graph GN at hand. Now suppose the pair (G1, G2) admits a sandwich
homogeneous set H with more than d vertices. The subgraph of GN induced
by H cannot be totally disconnected (or the vertices of H would constitute
an independent set of GN with more than d vertices), so there must be at
least two vertices x, y ∈ H which are connected by an edge in GN , which is
only the case if x and y are enemies. But this is a contradiction, for there
is a sandwich homogeneous set — H, by hypothesis — which contains both
x and y.

To illustrate the usefulness of the enmity graphs, we shall take a glance
back at the Harmonic Series algorithm from Section 8. The main difference

22

between the HS algorithm and the former Cerioli et al ’s EE algorithm,
for instance, is that, whereas the EE neglects the fact that two already
bias-enveloped vertices are enemies (and will never belong both to a same
SHS), the HS continuously uses this knowledge to constraint the length
of further envelopments (once, by Lemma 10, the size of possibly existing
SHSs is more and more restricted by the increasing number of known enmity
relationships).

In other words, what all algorithms based on the Bias Envelopment do
is to start from a trivial enmity graph and try to answer yes along the way
or no after a complete enmity graph has been reached. Whereas the EE
algorithm simply did not care about enmity graphs, the knowledge they
bring allows the HS algorithm to save precious time.

Figures 10(a) and 10(b), respectively, show the enmity graphs at hand
by the end of the first and the second Bias Envelopment turns during the
execution of the HS algorithm on some input instance whatsoever (under
the hypothesis that no SHS had yet been found up to that point).

In the HS algorithm, n new enmity relationships are brought to light
(i.e. n new edges are added to GN) at the end of each turn of Bias En-
velopments, so that the number of vertices in possibly existing (albeit still
undiscovered) SHSs is limited to the size of the maximum independent set
in the current GN (which, as seen in Section 8, is easy to calculate given
that particular envelopment order).

The following Growing Cliques algorithm, given in Section 10, differs
from the HS algorithm in that it applies the best such order, i.e. the order
(in which edges are added to the subjacent enmity graph) which minimizes
the average Bias Envelopment length.

10 The Growing Cliques algorithm

It is clear that, in all HSSP algorithms based on the Bias Envelopment
procedure, the tighter the known upper bound for the size of searched-
for SHSs at a certain point, the earlier all remaining envelopments will be
allowed to stop. In this sense, the development of an optimized envelopment-
based algorithm has to find the answer to the question: which is the best
order in which vertex pairs can be submitted to Bias Envelopment?

Given that unsuccessful Bias Envelopments reveal enmity relationships
(in other words, add edges to the subjacent enmity graph GN) likely to
tighten the upper bound to the cardinality of possibly existing SHSs (ac-
cording to Lemma 10), the aforementioned question reads: what is the
envelopment order that continuously minimizes the size of the maximum
independent set of GN?

The answer is quite simple and leads directly to the algorithm depicted
by Figure 11: the one in which disjoint cliques of increasing size are assem-

23

Growing Cliques HSSP Algorithm (G1(V,E1), G2(V,E2))

1. C ← {{vi} | vi ∈ V } //initializes the cover with singletons.
2. while |C| > 1
2.1. Index all cliques in C from 1 to |C|.
2.2. for each clique Cj ∈ C such that j is even do
2.2.1. for each pair {x, y} such that x ∈ Cj , y ∈ Cj−1 do
2.2.1.1. if Incomplete Bias Envelopment (G1, G2, {x, y}, |C|) = yes

return yes.
2.2.2. C ← (C ∪ {Cj ∪ Cj−1}) \ {Cj , Cj−1} //joins Cj and Cj−1.
3. return no.

Figure 11: The Growing Cliques algorithm

bled — so that the size of the minimum clique cover is as small as possible.
(We recall that a clique cover is a collection of cliques such that each and
every vertex of the graph belongs to precisely one clique. Clearly, the size
of the minimum clique cover is an upper bound for the size of the maximum
independent set).

The Growing Cliques (GC) algorithm, as well as the HS algorithm, sub-
mits each and every pair of input vertices to Bias Envelopment.

In the GC algorithm, still the Bias Envelopments are organized in turns.
The first turn, which starts with a trivial (empty) enmity graph GN , aims
to join GN ’s current maximal cliques of size 1, pairwisely, in order to as-
semble bn/2c cliques of size 2 (and possibly a remainder clique of size 1,
in case n is odd). Figure 12(a) shows the partial enmity graph GN after
all Bias Envelopments of the first GC algorithm’s turn have been run. It
is easy to see that the size of the maximum independent set of GN is now
O(n/2). The second turn of Bias Envelopments will join GN ’s cliques of
size 2, pairwisely, ending up with O(n/4) cliques of size 4 (plus at most one
remainder clique of lesser size). All further envelopment turns continue the
same way. Figures 12(b) and 12(c), respectively, show the partial enmity
graph GN at the end of the second and third turns of Bias Envelopments
undertaken by the GC algorithm. This clique-assembling process goes on
and forth until either a Bias Envelopment answers yes or the last turn ends
up with all vertices tied together in a big, single clique of the enmity graph,
which yields a no answer to the HSSP instance at hand.

The point is, all Bias Envelopments in the t-th turn need not go beyond
the threshold of dn/2t−1e, which bounds the size of the maximum indepen-
dent set of the enmity graph during this turn (and, as a consequence, the
size of any SHS to be possibly found thenceforth).

24

Figure 12: Enmity graphs during a GC algorithm execution

10.1 Proof of correctness / completeness

Theorem 11. The Growing Cliques algorithm correctly solves the HSSP.

Proof. As usual, an yes answer is only given if a Bias Envelopment procedure
has successfully found a valid SHS.

Now, suppose the input has a sandwich homogeneous set H with size
h. In order to prove that, under this hypothesis, the algorithm does answer
yes, it is enough to show that: (i) the algorithm cannot answer no before
each and every pair {x, y} ⊆ H have been submitted to an Incomplete
Bias Envelopment; and (ii) whenever the first such pair {x, y} ⊆ H is bias-
enveloped, the envelopment does not stop before a SHS has successfully been
found.

To show (i), we argue that the algorithm can only stop with a no answer
if the condition of the main loop (line 2) is not anymore satisfied, which
means that a single clique, covering all vertices of GN , has been reached. In
particular, each x, y ∈ H must have been connected by an edge in this final
GN , but such an edge can only be added to GN after the set {x, y} has been
bias-enveloped.

25

To show (ii), let us suppose, by contradiction, that the Incomplete Bias
Envelopment which started with initial candidate {x, y} ⊆ H stopped with-
out having found any SHSs. Once its stop parameter had been set (see line
2.2.1.1 in Figure 11) at the current cardinality of the set C (i.e. the number
of cliques, all maximal by construction, in the current enmity graph) and it
has not found H, which has h vertices, it comes that the number of maximal
cliques in the partial enmity graph at that moment was less than h. But
this is a contradiction, for Lemma 10 states that the size of the maximum
independent set (which cannot be greater than the number of cliques in a
clique cover) is a ceiling for the size of any SHSs of that input instance.

10.2 Complexity analysis

As each turn of Bias Envelopments divides the size of the clique cover C
by 2, the GC algorithm stops, in the worst case, after O(log n) turns. This
is the maximum number of iterations of the algorithm’s main loop (line 2).

The time complexity of each turn of Bias Envelopments (lines 2.1 to
2.2.2) is given by the number of Incomplete Bias Envelopments that are
undertaken multiplied by the complexity of each Incomplete Bias Envelop-
ment. In the t-th turn, the number of envelopments is O(2t−2n) and the
stop parameter is n/2t−1. As the time complexity of an Incomplete Bias En-
velopment with stop parameter k is O(nk), it comes that each Incomplete
Bias Envelopment in the t-th turn takes O(n · n/2t−1) = O(n2/2t−1) time.
Hence, the total time complexity of the t-th turn is O(2t−2n) ·O(n2/2t−1) =
O(n3/2) = O(n3), regardless of t.

Thus, the time complexity of the GC algorithm is
∑O(logn)

t=1 O(n3) =
O(n3 log n).

A different way of benefiting from the enmity graphs is exemplified in
the following Section 11, where we present a Las Vegas randomized algo-
rithm that solves the HSSP in O(n3) expected time, saving a log m

n factor
compared to the best deterministic algorithms’ worst-case time complexi-
ties. It achieves this by using a data structure that explicitly keeps track of
one evolving, dynamically built enmity graph.

11 The Las Vegas HSSP algorithm

A Las Vegas algorithm for a decision problem is one which always gives the
correct answer, but whose running time is a random variable (it somehow
depends on random choices). Its efficiency is therefore evaluated in terms of
its expected running time.

While studying both the Harmonic Series and the Growing Cliques algo-
rithms, in Sections 8 and 10, it became clear that the performance of such

26

Enmity Constrained Bias Envelopment
(G1(V,E1), G2(V,E2), H1, GN (V,EN))

1. H ← H1

2. while |H| < |V | do
2.1. if B(H) = ∅

return yes.
2.2. else

for each vertex pair {x, y | x ∈ B(H), y ∈ H ∪B(H)} do
2.2.1 if (x, y) ∈ EN

return no.
2.2.2. H ← H ∪B(H)
3. return no.

Figure 13: The Enmity-Constrained Bias Envelopment procedure

algorithms depends largely on the chosen sequence of vertex pairs to be put
under Bias Envelopment. Even if the best deterministic such sequence is
opted for, though, it has been seen that a worst-case complexity no bet-
ter than O(n3 log n) could be achieved. In this section, we show how it is
possible to save some relevant worst-case running time by making use of a
randomized order of envelopment submittance.

The Las Vegas algorithm introduced in the present section also belongs to
the family of envelopment-based HSSP algorithms. Once again, input vertex
pairs are submitted to Bias Envelopment in order to find out whether any
of them belongs to some SHS, and still the enmity relationships disclosed
by unsuccessful Bias Envelopments will play a fundamental role.

In the HS and GC algorithms, the subjacent “enmity graph” only ex-
isted virtually (no edge or enmity information was stored anywhere), as a
means of providing theoretically-calculated bounds for the length of further
envelopments. This time, however, the enmity graph will actually exist.
Instead of obtaining decreasing upper bounds to the size of searched-for
SHSs (which would constitute appropriate stop parameters to Incomplete
Bias Envelopments), the enmity graph will be now randomly built (and its
adjacency matrix explicitly stored), providing an efficient way of achieving
early envelopment stops.

A variation of the Incomplete Bias Envelopment, which is referred to as
Enmity-Constrained Bias Envelopment, is shown in Figure 13.

The Enmity Constrained Bias Envelopment is also incomplete, in the
sense that it may, as well, answer no before the candidate set has embodied
the whole input vertex set V . Instead of being provided with a stop param-
eter k which would limit the size of the candidate set, the envelopment will

27

Las Vegas HSSP Algorithm (G1(V,E1), G2(V,E2))

1. Initialize GN (V,EN) with an empty edge set EN .
2. Choose a random order Γ of all pairs of vertices {x, y} ⊂ V .
3. for each vertex pair {x, y} in Γ do
3.1. if Enmity Constrained Bias Envelopment(G1, G2, {x, y}, GN) = yes

return yes.
3.2. else EN ← EN ∪ {(x, y)}
4. return no.

Figure 14: A Las Vegas algorithm for the HSSP

stop whenever the candidate set contains two vertices that are known ene-
mies. (Notice that, now, the known enmity relationships between vertices
are explicitly upheld by GN , which is passed as a parameter).

The Las Vegas algorithm we present (see Figure 14) is similar to Cerioli
et al.’s EE algorithm [1], except that (i) Enmity-Constrained Bias Envelop-
ments will replace the normal (complete) Bias Envelopments thereof; and (ii)
by having the input vertex pairs follow a random envelopment submittance
sequence, an efficient worst-case expected running time will be achieved.

11.1 Proof of correctness / completeness

Theorem 12. The Las Vegas algorithm given in Figure 14 correctly solves
the HSSP.

Proof. As it is an envelopment-based algorithm, it is needless to reiterate
that an yes answer is only possible if a SHS has been correctly found. On
the other hand, if the algorithm answers no, it is the consequence of having
already submitted all input vertex pairs to Bias Envelopments, none of which
leading to a positive result. Each Enmity-Constrained Bias Envelopment,
in its turn, only aborts with a no answer after a pair of enemy vertices
has become part of the candidate set, which, by the definition of enemies,
witnesses the non-existence of SHSs containing that candidate.

11.2 Complexity analysis

The number of envelopments in the worst case is n(n− 1)/2 = O(n2). The
time complexity of the t-th Enmity Constrained Bias Envelopment is O(nrt),
where rt is the number of vertices in the candidate set H by the first time
two enemies appear among its elements. We want to calculate the expected
value of rt.

28

By the time the t-th Enmity Constrained Bias Envelopment starts, t−1
pairs of vertices will have already been no-answered by preceding envelop-
ments, which means that the current partial enmity graph will have ex-
actly t − 1 edges. As these t − 1 edges have been added to EN following a
random order, an edge between two vertices x, y ∈ H has the probability
pt = 2(t − 1)/n(n − 1) of belonging to EN . The number qt of pairs of ver-
tices that will be contained in H, by the time the first pair of enemies shall
belong to H in the t-th envelopment, is a geometric random variable with
success probability pt = O(t/n2). It is well known that such a variable has
an expected value of: E[qt] = 1/pt = O(n2/t).

As the number rt of vertices in H that corresponds to qt pairs of ver-
tices in H is rt = O(

√
qt), the searched-for expected value of rt is E[rt] =

O(
√
E[qt]) = O(n√

t
).

The expected running time of the t-th Enmity Constrained Bias Envelop-
ment will thus be O(nrt) = O(n2/

√
t), giving rise to the following expected

time for the whole algorithm:

O(n2)∑
t=1

O

(
n2

√
t

)
= O(n2)

O(n2)∑
t=1

O

(
1√
t

)
= O(n3).

12 The Quick Fill algorithm

The algorithm presented in this section, which is referred to as the Quick
Fill (QF) algorithm, is so to say the sum of three previous algorithms’
important achievements: (i) the progressive decrease in the length of the
envelopments, made possible by some well-chosen enmity-checking sequence
— as in the Growing Cliques algorithm (Section 10); (ii) the lesser num-
ber of O(min{m1,m2}) envelopments that need to be run — as in the
Two-Phase algorithm (Section 4) — instead of other algorithms’ worst-case
Θ(n2), which was made possible by the proper use of the bias graph sup-
ported by Corollary 4; and (iii) the ability of saving time by stopping an
envelopment as early as there are two enemies belonging to the current
candidate set, which can be kept track of by means of actually having an
appropriate data structure to store the continuously evolving enmity graph
data — as in the Las Vegas algorithm (Section 11).

The central inspiration for the QF algorithm arises from the following
lemma:

Lemma 13. Let G1(V,E1), G2(V,E2) be an input instance for the HSSP
and let u, v ∈ V be two enemies. Then, every two vertices x, y ∈ V such
that there is a path, in the bias graph GB, from vertex [x, y] to vertex [u, v],
are also enemies of each other.

29

Proof. Lemma 13 states that, if there is no SHS which contains {u, v} ⊂ V
and vertex [x, y] ∈ VB reaches vertex [u, v] ∈ VB, then there is no SHS which
contains {x, y} ⊂ V either. From the construction of the bias graph, it is
known that all edges in EB are of the form ([x, y], [x, b]) 2 and one such
edge only belongs to EB if b is a bias vertex of {x, y}. Now, it comes from
Theorem 1 that all SHSs that contain {x, y} must also contain {b}. Hence,
if there is no SHS containing {x, b}, there cannot be any containing {x, y}
either. In other words, if {x, b} are enemies then {x, y} are enemies as well.

It is easy to see that this reasoning holds true for paths, in the bias graph,
of whichever length. Let α1, α2, . . . , αk be a path in GB, where αi stands for
a vertex [ui, vi] ∈ VB. If there exists no SHS which contains {uk, vk} (i.e. the
labelling vertices of αk), then the above reasoning shows there cannot exist
any containing {uk−1, vk−1}, which prevents, in its turn, the existence of any
SHSs containing uk−2, vk−2 and so on and so forth. This is enough to show
that the two labelling vertices ui, vi of αi, 1 ≤ i ≤ k, are indeed enemies of
one another.

In order to introduce the Quick Fill algorithm, let us think about the
Las Vegas algorithm (see Section 11) for a while. There is an enmity graph,
initially empty, whereto an edge is added every time an unsuccessful envel-
opment is run (disclosing a new enmity relationship between two input ver-
tices). The storage of these enmity relationships’ data allows each Enmity-
Constrained Bias Envelopment procedure to stop as early as a pair of ene-
mies takes part in the candidate set. Thus, the more edges have been added
to the enmity graph, the sooner an envelopment is expected to stop.

The first, simplest improvement brought about by Lemma 13 would
therefore be the ability to add to the enmity graph more than one edge
per unsuccessful envelopment. Actually, after a pair {u, v} ⊂ V has been
discovered not to be contained in any SHSs, one edge could be added, in
the enmity graph, between any two vertices x, y ∈ V such that [x, y] reaches
[u, v] in the bias graph associated to that input instance.

The Quick Fill algorithm, however, does not even need to worry about
these extra edge additions, for it will accomplish this intended faster comple-
tion of the enmity graph as a simple consequence of its envelopment strategy,
as follows.

It starts by generating the bias graph GB(VB, EB) of (G1, G2) and then,
mostly as in the BGC algorithm, it finds GB’s end strongly connected com-
ponents (ESCC). For each ESCC P ⊆ GB it assigns a sink representative,
which can be any vertex [u, v] ∈ P . It is clear that all vertices in the bias
graph reach at least one sink representative.

Every vertex [x, y] ∈ VB will then be assigned a reachable sink s(x, y) =
[u, v] ∈ VB, which is nothing but one of the sink representatives reached by

2or ([x, y], [y, b]), as well.

30

Quick Fill HSSP Algorithm (G1(V,E1), G2(V,E2))

1. Construct the bias graph GB of (G1, G2).
2. S ← ∅ //list of sink representatives.
3. for each end strongly connected component Pi of GB do
3.1. Add to S the first element of Pi.
4. Let G′B be a copy of GB with all edges reversed.
5. Obtain a depth-first search forest F of G′B,

with all trees rooted on elements of S.
6. for each vertex [x, y] ∈ GB do
6.1. s(x, y)← [u, v], where [u, v] is the root of the tree

whereto [x, y] belongs, in F .
7. Initialize GN (V,EN) with an empty edge set EN .
8. C ← {{vi} | vi ∈ V } //initializes the clique cover.
9. while |C| > 1
9.1. Index all cliques in C from 1 to |C|.
9.2. for each clique Cj ∈ C such that j is even do
9.2.1. for each pair {x, y} such that x ∈ Cj , y ∈ Cj−1 do
9.2.1.1. Let [u, v] be the reachable sink s(x, y).
9.2.1.2. if (u, v) ∈ EN

go to 9.2.1.5.
9.2.1.3. else if Enmity Constrained Bias Envelopment

(G1, G2, {u, v}, GN) = yes
return yes.

9.2.1.4. EN ← EN ∪ {(u, v)}
9.2.1.5. EN ← EN ∪ {(x, y)}
9.2.2. C ← (C ∪ {Cj ∪ Cj−1}) \ {Cj , Cj−1} //joins Cj and Cj−1.
10. return no.

Figure 15: The Quick Fill algorithm

[x, y]. This is accomplished by a simple depth-first search run on a copy of
GB with reversed edges, having the sink representatives of GB as roots of
the resulting search forest’s trees.

A trivial enmity graph GN (V,EN = ∅) is created.
The idea, from then on, will be that of following the exact edge-addition

order as in the Growing Cliques algorithm, so as to continuously minimize
the size of the maximum independent set of the enmity graph at hand. The
only difference is, whenever it is time for a pair {x, y} ⊂ V to be enveloped
(in order to add edge (x, y) to EN), the labelling vertex pair {u, v} of the
reachable sink s(x, y) = [u, v] ∈ GB will be enveloped instead, by the end of
which the algorithm will have stopped with an yes answer or else two edges

31

are added to the enmity graph, namely edges (x, y) and (u, v). If there
had already been an edge (u, v) ∈ EN by the time {x, y} happened to be
the next pair in the addition sequence, then the edge (x, y) would be added
immediately and effortlessly to EN , without running any Bias Envelopments
at all — wherefrom came the algorithm’s name.

No doubt such an envelopment-free O(1) edge addition would mean, in
practice, a welcome saving of the algorithm’s running time, but is it that
the theoretical worst-case time complexity could benefit from this at all?

The answer is yes, and it bears entirely on Lemma 5. As long as only
the sink representatives will ever be actually submitted to Bias Envelop-
ment, the number of envelopments that will take place, in the worst case, is
O(min{m1,m2}).

In short, the QF can be regarded as either (i) a GC which only runs
O(min{m1,m2}) envelopments, in the worst case, instead of the latter’s
Θ(n2); or (ii) a 2P which only uses early-stops envelopments instead of
complete O(n2) ones.

Figure 15 makes things clearer by depicting QF’s pseudo-code.

12.1 Proof of correctness / completeness

Theorem 14. The Quick Fill algorithm correctly solves the HSSP.

Proof. The proof is identical to that of the Growing Cliques algorithm (Sec-
tion 10) plus the fact, supported by Lemma 13, that two vertices u, v ∈ V
need not be put under Bias Envelopment in order to find out they are en-
emies if it is already known there is a pair of enemies x, y ∈ V such that
[u, v] reach [x, y] in the bias graph of that HSSP instance.

12.2 Complexity analysis

Each Incomplete Bias Envelopment, in the Growing Cliques algorithm, is
provided with a stop parameter which is equal to a known upper bound
for the size of the maximum independent set of the subjacent enmity graph
during a certain envelopment turn.

In this Quick Fill algorithm, Enmity-Constrained Bias Envelopments
are used, just as in the Las Vegas algorithm (Section 11), as a means of
benefitting as largely as possible from the known enmity relationships among
input vertices. Its worst-case analysis, though, is similar to that of the GC
algorithm, since, in the worst case, each of its envelopments will only be
allowed to stop when the size of the candidate set has reached the very same
theoretical bound the GC would use as stop parameter to its corresponding
Incomplete Bias Envelopment. Thus, given that each QF envelopment will
have exactly the same length of those of the GC, their analysis are, to a
great extent, the same.

32

In both GC and QF algorithms, the envelopments are divided into turns,
each one joining cliques of the enmity graph pairwisely together into bigger
ones of doubled size. Also, in the t-th turn, the number of envelopments is
O(2t−2n) in both cases. What distinguishes both algorithms is, actually, the
number of turns that have to be run in the worst case. There, in the GC,
the number of turns had to be enough for all Θ(n2) input vertex pairs to be
bias-enveloped, which yielded a total of O(log n) turns. Here, the Quick Fill
algorithm stops after the first O(min{m1,m2}) envelopments have been run.
This allows us to obtain an upper bound t′ for the number of envelopment
turns it undertakes:

t′∑
t=1

O(2t−2n) = O(min{m1,m2})

t′ = O
(

log
m

n

)
where m here stands for O(min{m1,m2}), i.e. the minimum between the

number of mandatory edges and the number of forbidden edges.
Just as in the GC algorithm, the total time complexity of the t-th turn

is O(2t−2n) ·O(n2/2t−1) = O(n3/2) = O(n3), regardless of t.
Thus, the time complexity of the QF algorithm is

t′∑
t=1

O(n3) =

O(log m
n)∑

t=1

O(n3) = O
(
n3 log

m

n

)
.

It is noticeable that the QF algorithm is never slower than the Two-
Phase from Section 4, since both run the exact same number of envelop-
ments and still the QF might have them stop earlier than that other algo-
rithm would. A more accurate upper bound for the Quick Fill algorithm is
therefore O(min{m1m2, n

3 log m
n }), which is however far more complicate.

13 Experimental Results

All algorithms presented in this paper have been implemented on a 3.2 GHz
Pentium 4 with 2 GB of RAM. Figures 16 and 17 list the time it took for
each algorithm to run. Figure 18 recalls the analytical complexities of all
algorithms.

The instances Rn,pm,pf have been obtained randomly for fixed percent-
ages of mandatory (pm) and forbidden (pf) edges. The instances Cn are
such that G1 is a cycle of n vertices and G2 = G1, which therefore constitute
no instances with zero optional edges.

For the Monte Carlo algorithm, an error ratio ε ≤ 0.05 has been de-
manded.

33

R100,10,10 R200,10,10 R400,10,10 R100,10,70 R200,10,70 R400,10,70

EE 1”620 18”580 5’56”670 1”109 18”407 6’06”921
2P 0”265 0”875 3”813 0”609 5”470 out mem
BS 0”234 2”985 38”703 0”234 2”844 37”531
MC 0”094 0”828 6”437 0”094 0”750 6”687
HS 0”125 1”219 12”610 0”141 1”219 12”719
GC 0”110 0”859 8”563 0”125 0”859 9”297
LV 0”032 0”343 3”160 0”062 0”375 2”985
QF 0”268 0”888 4”105 0”620 6”212 out mem

Figure 16: Experimental results (Random instances)

C100 C200 C400 C800 C1600

EE 1”470 19”468 6’18”631 1h45’39”121 28h02’22”424
2P 0”141 0”500 2”330 8”423 35”532
BS 0”203 2”627 36”227 7’12”790 1h22’25”139
MC 0”063 0”563 6”399 45”107 5’45”349
HS 0”094 1”320 11”970 1’43”499 15’16”156
GC 0”062 0”688 7”148 1’04”659 9’27”998
LV 0”031 0”297 2”700 19”735 2’37”126
QF 0”130 0”510 2”344 8”820 34”294

Figure 17: Experimental results (Cycles)

EE 2P BS MC

O(n4) O(m1m2) O(n3.5) O(n3)

HS GC LV QF

O(n3 log n) O(n3 log n) O(n3) O(n3 log m
n)

Figure 18: The algorithms’ asymptotical time complexities

The obtained results very clearly show that:

• all algorithms’ behaviors match the theoretical analysis’ predictions;

• for small instances, the algorithms which carry the overhead of having
to build the bias graph (2P and QF) are understandably slower;

• even though the worst-case time complexity of the 2P algorithm is not

34

better than that of the GC for dense input graphs, large inputs for
which the latter runs faster than the former are very rare and difficult
to generate, for their bias graph must own plenty of those most peculiar
structures which are ESCC’s not associated with any SHS’s.

• the same difficulty arises when one tries to generate instances which
lead to a better performance by the QF algorithm when compared to
the 2P, although the former is certainly never slower than the latter.

• the main drawback of the algorithms based on the bias graph, whose
adjacency matrix is biquadratic on the number of input vertices, is
their huge demand of space.

14 Conclusion

This paper provided the Homogeneous Set Sandwich Problem with a hand-
ful of new ideas, to wit: an O(n3.5) algorithm, based on the balancing tech-
nique; two O(n3 log n) easy-to-implement algorithms; the best HSSP deter-
ministic algorithm to date, which set the problem’s current upper bound
at O(n3 log m

n); and two didactic-like O(n3) randomized algorithms: a one-
sided error (yes-biased) Monte Carlo and a Las Vegas one. This latter
algorithm probably turns out to be our recommended practical choice on
the HSSP, not only due to its all-fast O(n3) expected running time but also
for its being altogether simple.

An open question, concerning the complexity analysis of both the 2P
and the QF algorithms, is whether or not O(min{m1,m2}) is a tight enough
bound for the number of non-pair-closed end strongly connected components
in a bias graph. So far we do not know of any HSSP instance whose bias
graph presents a number of non-pair-closed ESCCs that is not bounded by
O(n log n), clearly a better (albeit unproven) bound. For the time being,
either a proof that O(n log n) is indeed an upper bound or the exhibition
of a bias graph with a greater number of non-pair-closed ESCCs shall be
equally welcome.

15 Acknowledgements

This text was intentionally organized in a (hopefully) self-contained fashion,
so that most readers, who might be unacquainted with HSSP’s past research,
would be provided with a complete panel of its history and state-of-the-art
techniques.

The counterexamples to Tang et al.’s BGC algorithm and the 2P algo-
rithm first appeared in [13], although Counterexample 3 has been slightly
improved to a more economic version since, as in [5]. Also, the complexity
analysis of the 2P has benefited from the sped-up implementation of the

35

Bias Envelopment procedure and appears, in this paper, in its refined ver-
sion. An extended abstract, containing both the Balanced Subsets and the
Monte Carlo algorithms, appeared in [4]. All other algorithms in this text
were yet unpublished.

We would like to thank Professor Carlos Alberto Martinhon3 for his
valuable, friendly support.

3Univ. Federal Fluminense, Brazil.

36

Appendix 1: Quick Bias Envelopment

The pseudo-code in Figure 19 shows a very simple way to implement the
Bias Envelopment procedure, so much dealt with along the text. Such a
sped-up Bias Envelopment implementation turned out to be an important
piece in the analysis of some of the algorithms presented herein.

Quick Bias Envelopment (G1(V,E1), G2(V,E2), H1)

1. H ← H1

1. B ← ∅
2. for each vertex v ∈ V do
2.1. M [v]← false
2.2. F [v]← false

// Initialization.
3. for each vertex v ∈ H do
3.1. for each vertex x ∈ N1(v) do
3.1.1. M [x]← true
4. for each vertex v ∈ H do
4.1. for each vertex x ∈ N2(v) do
4.1.1. F [x] = true
4.1.2. if M [x] = true and x /∈ H

B ← B ∪ {x}
// Main envelopment loop.

5. while |B| > 0 do
5.1. b← an element of B
5.2. B ← B \ {b}
5.3. H ← H ∪ {b}
5.4. for each vertex x ∈ N1(b) do
5.4.1. M [x]← true
5.4.2. if F [x] = true and x /∈ H

B ← B ∪ {x}
5.5. for each vertex x ∈ N2(b) do
5.5.1. F [x]← true
5.5.2. if M [x] = true and x /∈ H

B ← B ∪ {x}
6. if H 6= V

return yes.
7. else return no.

Figure 19: Implementation of a fast Bias Envelopment

37

The idea is to provide each vertex v ∈ V with two boolean flags M [v]
and F [v] which will signal, respectively, whether there exist mandatory or
forbidden edges between v and any one vertex in the current candidate set
H. This speeds up the envelopment process, as former O(n) set opera-
tions [1] can be replaced by constant-time read-and-write flag handling on
the number of forbidden and mandatory neighbors of a given vertex.

There is an initialization step (lines 3 to 4.1.2) which flags all vertices
that are not contained in the initial candidate set H1 as to being mandatory
or forbidden neighbors of some vertex x ∈ H1. Vertices b ∈ V \ H1 which
have both flags set to true are put into the initial bias set B.

Then, there takes place a loop which only breaks when B is empty.
Although all vertices b ∈ B prevent H from being contained in a SHS which
does not contain b, each loop iteration will have exactly one vertex b moved
from B to H. The only vertices which need to be looked at, after such a
single move, are b’s mandatory and forbidden neighbors in V \ (H ∪B) (in
order to be either appropriately flagged or else added to B).

The correctness of the method is very easily verified, for Theorem 1
makes it sufficient to show that (i) every vertex in Hk+1 \ Hk is indeed
a bias vertex of Hk and (ii) every bias vertex of Hk ought to become an
element of Hk+t, for some t before the algorithm stops. It is easy to see
that (i) holds, since a vertex enters the candidate set only if both its flags
(M and F) are true; as for (ii), the non-emptiness of B simply prevents the
algorithm from stopping.

The running time of the Quick Bias Envelopment procedure is clearly
O(m1 + m2), as each edge — either mandatory or forbidden — triggers a
constant-time operation for a constant number of times.

Appendix 2: Quick Bias Graph

According to [15], assembling the bias graph GB(VB, EB) of a pair (G1, G2)
would take O(n242) time. Actually, it can be done in O(n ·min{m1,m2})
time, provided an adequate data structure is used, as follows: (i) adjacency
matrices for G1 and G2 (or one single three-state matrix, as well), in order
to allow constant-time adjacency-type verification; and (ii) two adjacency
lists per vertex v ∈ V , in order to allow O(|N1(v)|) and O(|N2(v)|) access
to all mandatory and, respectively, forbidden neighbors of v — instead of
the O(n) time it takes for traversing an entire matrix row.

Figure 20 shows a simple method to achieve a fast bias graph creation.
The insertion, in the bias graph, of all due outgoing edges from each

vertex [x, y] ∈ VB requires the bias set of {x, y}, with respect to (G1, G2),
to be determined. Now, the bias vertices of {x, y} are those which are at
the same time mandatory neighbors of x and forbidden neighbors of y, or
vice-versa. In order to efficiently determine the intersection of, say, the

38

Quick Bias Graph (G1(V,E1), G2(V,E2))

1. VB ← {[x, y] | x, y ∈ V, x 6= y}
2. EB ← ∅
3. for each vertex [x, y] ∈ VB do

// mandatory to x, forbidden to y.
3.1. if |N1(x)| ≤ |N2(y)|
3.1.1. for each vertex w ∈ N1(x) do
3.1.1.1 if (y, w) is forbidden

EB ← EB ∪ {([x, y], [x,w]), ([x, y], [y, w])}
3.2 else
3.2.1. for each vertex w ∈ N2(y) do
3.2.1.1 if (x,w) is mandatory

EB ← EB ∪ {([x, y], [x,w]), ([x, y], [y, w])}
// mandatory to y, forbidden to x.

3.3. if |N1(y)| ≤ |N2(x)|
3.3.1. for each vertex w ∈ N1(y) do
3.3.1.1 if (x,w) is forbidden

EB ← EB ∪ {([x, y], [x,w]), ([x, y], [y, w])}
3.4 else
3.4.1. for each vertex w ∈ N2(x) do
3.4.1.1 if (y, w) is mandatory

EB ← EB ∪ {([x, y], [x,w]), ([x, y], [y, w])}
4 return GB(VB, EB).

Figure 20: A fast bias graph creation method

mandatory neighbors list of x and the forbidden neighbors list of y, the
shortest between these two lists is traversed, having each of its members
checked as to being an element of the longest one (this check is achieved in
constant time by means of a lookup in the adjacency matrix).

Let us suppose that, instead of choosing the shortest list, the algorithm
always opted for the traversal in the mandatory neighbors list. This would
certainly not make a faster algorithm out of it. Now, it is clear that such a
less efficient algorithm would take Θ(n ·m1) time to obtain the whole edge
set EB, once, for all x ∈ V , each mandatory neighbor of x would be accessed
Θ(n) times (one for each [x,w] ∈ VB), giving rise to a matrix lookup and
(possibly) an edge addition, both O(1).

Analogously, a Θ(n ·m2) bound would arise if the method always tra-
versed the forbidden neighbors list instead.

Thus, the procedure shown in Figure 20, which is no slower than these
modified attempts, is certainly O(min{n ·m1, n ·m2}) = O(n ·min{m1,m2}).

39

References

[1] M. R. Cerioli, H. Everett, C. M. H. Figueiredo, and S. Klein, The
homogeneous set sandwich problem, Information Processing Letters 67
(1998), 31–35.

[2] A. Cournier, Sur quelques algorithmes de décomposition de graphes,
Ph.D. thesis, Université Montpellier II, 1993.

[3] S. Dantas, L. Faria, and C. M. H. Figueiredo, On decision and optimiza-
tion (k, l)-graph sandwich problems, Discrete Appl. Math. 143 (2004),
155–165.

[4] C. M. H. Figueiredo, G. D. Fonseca, V. G. P. Sá, and J. Spinrad,
Faster deterministic and randomized algorithms on the homogeneous
set sandwich problem, 3rd Workshop on Efficient and Experimental
Algorithms, Lecture Notes Comput. Sci., vol. 3059, Springer-Verlag,
2004, pp. 243–252.

[5] C. M. H. Figueiredo and V. G. P. Sá, Note on the homogeneous set
sandwich problem, Information Processing Letters 93 (2005), 75–81.

[6] M. C. Golumbic, H. Kaplan, and R. Shamir, Graph sandwich problems,
Journal of Algorithms 19 (1995), 449–473.

[7] M. C. Golumbic and A. Wassermann, Complexity and algorithms for
graph and hypergraph sandwich problems, Graphs Combin. 14 (1998),
223–239.

[8] H. Kaplan and R. Shamir, Bounded degree interval sandwich problems,
Algorithmica 24 (1999), 96–104.

[9] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Dis-
crete Math. (1972), no. 2, 253–267.

[10] R. M. McConnell and J. Spinrad, Modular decomposition and transitive
orientations, Discrete Math. 201 (1999), 189–241.

[11] J. H. Muller and J. Spinrad, Incremental modular decomposition, J.
ACM 36 (1989), 1–19.

[12] B. Reed, A semi-strong perfect graph theorem, Ph.D. thesis, School of
Computer Science, McGill University, Montreal, 1986.

40

[13] V. G. P. Sá, O problema-sandúıche para conjuntos homogêneos em
grafos, Master’s thesis, COPPE / Universidade Federal do Rio de
Janeiro, May 2003.

[14] J. Spinrad, P4-trees and substitution decomposition, Discrete Appl.
Math. 39 (1992), 263–291.

[15] S. Tang, F. Yeh, and Y. Wang, An efficient algorithm for solving the
homogeneous set sandwich problem, Information Processing Letters 77
(2001), 17–22.

[16] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J.
Comput. 1 (1972), no. 2, 146–160.

41

