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Abstract. A homogeneous set is a non-trivial, proper subset of a graph’s
vertices such that all its elements present exactly the same outer neigh-
borhood. Given two graphs, G1(V, E1), G2(V, E2), we consider the prob-
lem of finding a sandwich graph Gs(V, ES), with E1 ⊆ ES ⊆ E2, which
contains a homogeneous set, in case such a graph exists. This is called
the Homogeneous Set Sandwich Problem (HSSP). We give an O(n3.5)
deterministic algorithm, which updates the known upper bounds for this
problem, and an O(n3) Monte Carlo algorithm as well. Both algorithms,
which share the same underlying idea, are quite easy to be implemented
on the computer.

1 Introduction

Given two graphs G1(V, E1), G2(V,E2) such that E1 ⊆ E2, a sandwich problem
with input pair (G1, G2) consists in finding a sandwich graph Gs(V,ES), with
E1 ⊆ ES ⊆ E2, which has a desired property Π [3]. In this paper, the property
we are interested in is the ownership of a homogeneous set. A homogeneous set
H, in a graph G(V, E), is a subset of V such that (i) 2 ≤ |H| ≤ |V | − 1 and (ii)
for all v ∈ V \H, either (v, v′) ∈ E is true for all v′ ∈ H or (v, v′) /∈ E is true for
all v′ ∈ H. In other words, a homogeneous set H is a subset of V such that the
outside-H neighborhood of all its vertices is the same and which also satisfies the
necessary, above mentioned size constraints. A sandwich homogeneous set of a
pair (G1, G2) is a homogeneous set for at least one among all possible sandwich
graphs for (G1, G2).

There are many algorithms which find homogeneous sets quickly in a single
graph. The most efficient one is due to McConnell and Spinrad [4] and has O(|E|)
time complexity.

On the other hand, the known algorithms for the homogeneous set sandwich
problem are far less efficient. The first polynomial time algorithm was presented
by Cerioli et al. [1] and has O(n4) time complexity (where n = |V |, as throughout
the whole text). We refer to it as the Exhaustive Bias Envelopment algorithm
(EBE algorithm, for short), as in [2]. An O(∆n2) algorithm (where ∆ stands for
the maximum vertex degree in G1) has been found by Tang et al. [6], but in [5,
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2] it is proved incorrect. Although all efforts to correct Tang et al.’s algorithm
(referred to as the Bias Graph Components algorithm, in [2]) have been in vain,
some of its ideas were used, in [5, 2], to build a hybrid algorithm, inspired by both
[1] and [6]. This one has been called the Two-Phase algorithm (2-P algorithm,
for short) and currently sets the HSSP’s upper bounds at its O(m1m2) time
complexity, where m1 and m2 respectively refer to the number of edges in G1

and the number of edges not in G2.
After defining some concepts and auxiliary procedures in Section 2, we present,

in Section 3, a new O(n3.5) deterministic algorithm for the HSSP. It offers a good
alternative to the 2-P algorithm (whose time complexity is not better than O(n4)
if we express it only as a function of n) when dealing with dense input graphs,
whereas the 2-P would remain the best choice when sparse graphs are dealt with.
Besides, Section 4 is devoted to a fast, randomized Monte Carlo algorithm, which
solves this problem in O(n3) time with whatever desired error ratio.

2 Bias Envelopment

We define the bias set B(H) of a vertex subset H as the set of vertices b /∈ H
such that (b, vi) ∈ E1 and (b, vj) /∈ E2, for some vi, vj ∈ H. Such vertices b are
called bias vertices of the set H [6]. It is easy to see that H, with 2 ≤ |H| ≤ n−1,
is a sandwich homogeneous set if and only if B(H) = ∅.

It is proved in [1] that any sandwich homogeneous set containing the set of
vertices H should also contain B(H). This result, along with the fact that no
homogeneous sets are allowed with less than two vertices, gave birth in that same
paper to a procedure which we call Bias Envelopment [2]. The Bias Envelopment
procedure answers whether a given pair of vertices is contained in any sandwich
homogeneous sets of the input instance. The procedure starts from an initial
sandwich homogeneous set candidate H1 = {v1, v2} and successively computes
Ht+1 = Ht ∪ B(Ht) until either (i) B(Ht) = ∅, whereby Ht is a sandwich
homogeneous set and it answers yes; or (ii) |Ht|+ |B(Ht)| = n, when it answers
no, meaning that there is no sandwich homogeneous set containing {v1, v2}. The
Bias Envelopment procedure runs in O(n2) time, granted some appropriate data
structures are used, as described in [1].

The EBE algorithm, presented in [1], tries to find a sandwich homogeneous
set exhaustively, running the Bias Envelopment procedure on all n(n−1)/2 pairs
of the input graphs’ vertices, in the worst case. Thus, the time complexity of the
EBE algorithm is O(n4).

Both algorithms we introduce in this paper are based on a variation of the
Bias Envelopment procedure, which we call the Incomplete Bias Envelopment.
The input of the Incomplete Bias Envelopment is a pair of vertices {v1, v2} and
a stop parameter k < n. The only change in this incomplete version is that,
whenever |Ht| > k, the envelopment stops prematurely, answering no and re-
jecting {v1, v2}. Notice that a no answer from the Incomplete Bias Envelopment
with parameter k means that {v1, v2} is not contained in any homogeneous sets
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IncompleteBiasEnvelopment (G1(V, E1), G2(V, E2), v1, v2, k)

1. H ← {v1, v2}
2. while |H| ≤ k
2.1. if B(H) = ∅ and |H| < |V |
2.1.1. return H and yes // a sandwich homogeneous set was found.
2.2. else
2.2.1. H ← H ∪B(H)
3. return no // there are no sandwich homogeneous sets with k vertices

// or less which contain {v1, v2}.

Fig. 1. The Incomplete Bias Envelopment procedure.

of size at most k. Using the same data structures as in [1], the Incomplete Bias
Envelopment runs in O(nk) time.

The Incomplete Bias Envelopment generalizes its complete version, as a nor-
mal Bias Envelopment is equivalent to an Incomplete Bias Envelopment with
parameter k = n.

The pseudo-code for the Incomplete Bias Envelopment is in Figure 1.

3 The Balanced Subsets Algorithm

The algorithm we propose in this section is quite similar to the EBE algorithm,
in the sense that it submits each of the input vertices’ pairs to the process of Bias
Envelopment. The only difference is that this algorithm establishes a particular
order in which the vertex pairs are chosen, in such a way that it can benefit, at
a certain point, from unsuccessful envelopments that have already taken place.
After some unsuccessful envelopments, a number of vertex pairs have been found
not to be contained in any sandwich homogeneous sets. This knowledge is then
made useful by the algorithm, which will stop further envelopments earlier by
means of calling Incomplete Bias Envelopments instead of complete ones, saving
relevant time without loss of completeness.

When the algorithm starts, it partitions all n vertices of the input graphs into
O(
√

n) disjoint subsets Ci of size O(
√

n), each. Then all pairs of vertices will
be submitted to Bias Envelopment in two distinct phases: in the first phase, all
pairs consisting of vertices from the same subset Ci are bias enveloped (and only
those); in the second phase, all remaining pairs (i.e. those comprising vertices
that are not from the same subset Ci) are then bias-enveloped. In the end, all
possible vertex pairs will have been checked out as to belong or not to some sand-
wich homogeneous set from the input instance, just like in the EBE algorithm.
The point is: if all Bias Envelopments in the first phase fail to find a sandwich
homogeneous set, then the input instance does not admit any sandwich homo-
geneous sets which contain two vertices from the same subset Ci. Thence, the



4

BalancedSubsetsHSSP (G1(V, E1), G2(V, E2))

1. label all vertices in V from v1 to vn.
2. create d√n e empty sets Ci.
3. for each vertex vj ∈ V , do C

j modulod√n e = C
j modulod√n e ∪ {vj}.

4. for each pair of vertices {x, y} in the same subset Ci

4.1. if BiasEnvelopment(G1, G2, x, y) = yes
4.1.1. return yes.
5. for each pair of vertices {x, y} not in the same subset Ci

5.1. if IncompleteBiasEnvelopment(G1, G2, x, y, d√n e) = yes
5.1.1. return yes.
6. return no.

Fig. 2. The Balanced Subsets algorithm for the HSSP.

maximum size of any possibly existing homogeneous set is O(
√

n) (the number
of subsets into which the vertices had been dispersed), which grants that all Bias
Envelopments of the second phase need not search for large homogeneous sets!
That is why an Incomplete Bias Envelopment with stop parameter k = O(

√
n)

can be used instead.
Figure 2 illustrates the pseudo-code for the Balanced Subsets algorithm.

Theorem 1 The Balanced Subsets algorithm correctly answers whether there
exists a sandwich homogeneous set in the input graphs.

Proof. If the algorithm returns yes, then it has successfully found a set H ⊂ V ,
with 2 ≤ |H| ≤ |V | − 1, such that the bias set of H is empty. Thus, H is indeed
a valid sandwich homogeneous set.

Now, suppose the input has a sandwich homogeneous set H. If |H| > d√n e
then there are more vertices in H than subsets into which all input vertices
were spread, in the beginning of the algorithm (line 3). Thus, by the pigeon hole
principle, there must be two vertices x, y ∈ H which were assigned to the same
subset Ci. So, whenever {x, y} is submitted to Bias Envelopment (line 4), the
algorithm is doomed to find a sandwich homogeneous set. On the other hand,
if |H| ≤ d√n e, then it is possible that H does not contain any two vertices
from the same subset Ci, which would cause all Bias Envelopments of the first
phase (line 4.1) to fail. In this case, however, when a pair {x, y} ⊆ H happens
to be bias enveloped in line 5, the Incomplete Bias Envelopment is meant to
be successful, for the size of H is, by hypothesis, less than or equal its stop
parameter k = d√n e. ut

3.1 Complexity Analysis

As each subset Ci has O(n) pairs of vertices and there are O(
√

n) such subsets,
the number of pairs that are bias enveloped in the first phase of the algorithm
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(line 4) is O(n
√

n). All Bias Envelopments, in this phase, are complete and take
O(n2) time to be executed, which yields a subtotal of O(n3.5) time in the whole
first phase.

The number of pairs that are only submitted to Bias Envelopment in the sec-
ond phase (line 5) is O(n2)−O(n

√
n) = O(n2) pairs. Each Bias Envelopment is,

now, an incomplete one with parameter k = d√n e = O(
√

n). Because the time
complexity of each Incomplete Bias Envelopment with parameter k is O(nk),
then the total time complexity of the whole second phase of the algorithm is
O(n3k) = O(n3.5).

Thus, the overall time complexity of the Balanced Subsets algorithm is
O(n3.5).

4 The Monte Carlo Algorithm

An yes-biased Monte Carlo algorithm for a decision problem is one which always
answers no when the correct answer is no and which answers yes with probability
p whenever the correct answer is yes.

In order to gather some intuition, let us suppose the input has a sandwich
homogeneous set H with h vertices or more.

What would be, in this case, the probability p1 that a random pair of vertices
{x, y} ∈ V is not contained in H? Clearly,

p1 ≤ 1− h(h− 1)
n(n− 1)

.

What about the probability pt that t random pairs of vertices fail to be
contained in H? It is easy to see that

pt ≤
(

1− h(h− 1)
n(n− 1)

)t

.

Now, what is the probability pt that, after t Bias Envelopment procedures
have been run (starting from t randomly chosen pairs of vertices), a sandwich
homogeneous set have been found? Again, it is quite simple to reach the following
expression, which will be vital to the forthcoming reasoning.

pt ≥ 1−
(

1− h(h− 1)
n(n− 1)

)t

. (1)

If, instead of obtaining the probability pt from the expression above, we fix pt

at some desired value p = 1−ε, we will be able to calculate the minimum integer
value of ht (which will denote h as a function of t) that satisfies the inequality 1.
This value ht is such that the execution of t independent Bias Envelopment
procedures (on t random pairs) is sufficient to find a sandwich homogeneous set
of the input instance with probability at least p, in case there exists any with ht

vertices or more (see equation 2):
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ht =

⌊
1 +

√
1 + 4(n2 − n)(1− (1− p)1/t)

2

⌋
. (2)

However, we want an algorithm that finds a sandwich homogeneous set with
some fixed probability p in case there exists any, no matter its size. But as ht

decreases with the growth of t, the following question arises: how many random
pairs do we need to submit to Bias Envelopment in order to achieve that? The
answer is rather simple: the minimum integer t′ such that ht′ = 2, for 2 is the
shortest possible size of a sandwich homogeneous set!

Determining t′ comes straightforwardly from equation 2 (please refer to Sec-
tion 4.1 for the detailed calculations):

t′ =
ln(1− p)

ln
(
1− 2

n(n−1)

) = Θ(n2). (3)

Once the number t′ of Bias Envelopment procedures that need to be under-
taken on randomly chosen pairs of vertices is Θ(n2) and the time complexity of
each Bias Envelopment is O(n2), so far we seem to have been lead to an O(n4)
randomized algorithm, which is totally undesirable, for we could already solve
the problem deterministically with less asymptotical effort (see Section 3)!

Now we have come to a point where the incomplete version of the Bias
Envelopment procedure will play an essential role as far as time saving goes. We
show that, by the time the t-th Bias Envelopment is run, its incomplete version
with stop parameter k = ht−1 serves exactly the same purpose as its complete
version would do.

Lemma 2 In order to find a sandwich homogeneous set, with probability p, in
case there exists any with ht vertices or more, the t-th Bias Envelopment need
not go further when the size of the candidate set has exceeded ht−1.

Proof. Two are the possibilities regarding the input: (i) there is a sandwich
homogeneous set with more than ht−1 vertices; or (ii) there are no sandwich
homogeneous sets with more than ht−1 vertices.

If (i) is true, then no more than t − 1 Bias Envelopments would even be
required to achieve that. Hence the t-th Bias Envelopment can stop as early as
it pleases.

If (ii) is the case, then an Incomplete Bias Envelopment with stop parameter
k = ht−1 is meant to give the exact same answer as the complete Bias Envelop-
ment would, for there are no sandwich homogeneous sets with more than ht−1

vertices to be found.
Whichever the case, thus, such an Incomplete Bias Envelopment is perfectly

sufficient. ut

Now we can describe an efficient Monte Carlo algorithm which gives the
correct answer to the HSSP with probability at least p.
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MonteCarloHSSP (G1(V, E1), G2(V, E2), p)

1. h← |V |
2. t← 1
3. while h ≥ 2
3.1. (v1, v2)← random pair of distinct vertices of V
3.2. if IncompleteBiasEnvelopment(G1, G2, v1, v2, h) = yes
3.2.1. return yes
3.3. h← b(1 +

p
1 + 4(|V |2 − |V |)(1− (1− p)1/t))/2c

3.4. t← t + 1
4. return no

Fig. 3. The Monte Carlo algorithm for the HSSP.

The algorithm’s idea is to run several Incomplete Bias Envelopment pro-
cedures on randomly chosen initial candidate sets (pairs of vertices). At each
iteration t of the algorithm we run an Incomplete Bias Envelopment with stop
parameter k = ht−1 and either it succeeds in finding a sandwich homogeneous
set (and the algorithm stops with an yes answer) or else it aborts the current
envelopment whenever the number of vertices in the sandwich homogeneous set
candidate exceeds the ht−1 threshold. (In this case, Lemma 2 grants its appli-
cability.) For the first iteration, the stop parameter k is set to h0 = n, as the
first iteration corresponds to a complete Bias Envelopment. At the end of each
iteration, the value of ht is then updated (see equation 2), which makes it pro-
gressively decrease throughout the iterations until it reaches 2 (the minimum size
allowed for a homogeneous set), which necessarily happens after Θ(n2) iterations
(see equation 3).

The pseudo-code for this algorithm is in Figure 3.

Theorem 3 The Monte Carlo HSSP algorithm correctly answers whether there
exists a sandwich homogeneous set in the input graphs with probability at least
p.

Proof. If the algorithm returns yes, then it is the consequence of having found a
set H ⊂ V , with 2 ≤ |H| ≤ |V | − 1, such that the bias set of H is empty, which
makes a valid sandwich homogeneous set out of H. In other words, if the correct
answer is no then the algorithm gives a correct no answer with probability 1.

If the correct answer is yes, we want to show that it gives a correct yes answer
with probability p. Let h∗ be the size of the largest sandwich homogeneous set
of the input instance. As h0 = n and the algorithm only answers no after ht

has lowered down to 2, there must exist an index d such that hd ≤ h∗ < hd−1.
From the definition of ht we know that, on the hypothesis that the input has
a sandwich homogeneous set with ht vertices or more, t Bias Envelopments
are sufficient to find one, with probability at least p. As, by hypothesis, there
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is a sandwich homogeneous set with h∗ ≥ hd vertices, then d independent Bias
Envelopments are sufficient to find a sandwich homogeneous set with probability
p. So, it is enough to show that this quota of d Bias Envelopments is achieved.
It is true that Incomplete Bias Envelopments that stop before the candidate
set has reached the size of h∗ cannot find a sandwich homogeneous set with h∗

vertices. Nevertheless, the first d iterations alone perform this minimum quota of
Bias Envelopments. Because h∗ is the size of the largest sandwich homogeneous
set, the fact of being incomplete simply does not matter for these first d Bias
Envelopments, none among which being allowed to stop before the size of the
candidate set has become larger than hd−1 > h∗. ut

4.1 Complexity Analysis

The first iteration of the algorithm runs the complete Bias Envelopment in O(n2)
time [1]. (Actually, a more precise bound is given by O(m1 +m2) [2], but, as the
complexities of the Incomplete Bias Envelopment procedures do not benefit at
all from having edge quantities in their analysis, we prefer to write time bounds
only as functions of n, however.) The remaining iterations take O(nht) time
each. To analyze the time complexity of the algorithm, we have to calculate

t′∑
t=1

O (nht−1) ,

where t′ is the number of iterations in the worst case.
The value of ht, obtained at the end of iteration t, is defined by equation 2.

To calculate t′, we replace ht′ for 2 and have

(
1− 2

n(n− 1)

)t′

= 1− p, and finally

t′ =
ln(1− p)

ln
(
1− 2

n(n−1)

) .

For 0 < x < 1, it is known that

ln(1− x) = −x− x2

2
− x3

3
− · · · .

Consequently,

t′ =
ln(1− p)

− 2
n(n−1) − 1

Θ(n4)

= ln
1
ε
Θ(n2) = Θ(n2).

Now, we will show that q = h(h−1)/n(n−1) ≥ h2/2n2. This result is useful
to simplify some calculations. We have

n

n− 1
· h− 1

h
· h2

n2
=

h(h− 1)
n(n− 1)

, and
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h− 1
h

· h2

n2
≤ h(h− 1)

n(n− 1)
.

Since h ≥ 2,

h2

2n2
≤ h(h− 1)

n(n− 1)
= q.

To calculate the total time complexity, we replace h(h − 1)/n(n − 1) for
h2/2n2 and pt for the fixed value p in equation 1, and have

(
1− h2

2n2

)t

≥ 1− p,

h2

2n2
≤ 1− (1− p)1/t, and

h ≤ Θ(n)
√

1− (1− p)1/t.

It is well known that

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · .

Consequently, for x > 1,

e1/x = 1 + 1/Θ(x).

Using this approximation, we have

h ≤ Θ(n)
√

1− (1 + 1/Θ(t)) = Θ(n)/Θ(
√

t).

The total time complexity of the algorithm is

Θ(n2)∑
t=1

O
(
nht

)
=

Θ(n2)∑
t=1

O(n2)
O(
√

t)
= O(n2)

Θ(n2)∑
t=1

1/O(
√

t).

Using elementary calculus, we have

Θ(n2)∑
t=1

1/O(
√

t) = O(n).

Consequently, the total time complexity of the algorithm is O(n3).
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5 Conclusion

In this article, we presented two efficient algorithms for the Homogeneous Set
Sandwich Problem: the first was an O(n3.5) deterministic algorithm and the
other, an O(n3) Monte Carlo one. The best results so far had been O(n4), if
only functions of n are used to express time complexities.

A natural step, after having developed such a Monte Carlo algorithm, is often
the development of a related Las Vegas algorithm, i.e. an algorithm which always
gives the right answer in some expected polynomial time. Unfortunately, we do
not know of any short certificate for the non-existence of sandwich homogeneous
sets in some given HSSP instance, which surely complicates matters and suggests
a little more research on this issue.
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