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ABSTRACT. Hash tables are among the most important data structures known to mankind.

Through hashing, the address of each stored object is calculated as a function of the object’s

contents. Because they do not require exorbitant space and, in practice, allow for constant-

time dictionary operations (insertion, lookup, deletion), hash tables are often employed in the

indexation of large amounts of data. Nevertheless, there are numerous problems of somewhat

different nature that can be solved in elegant fashion using hashing, with significant economy of

time and space. The purpose of this paper is to reinforce the applicability of such technique in

the area of Operations Research and to stimulate further reading, for which adequate references

are given. To our knowledge, the proposed solutions to the problems presented herein have

never appeared in the literature, and some of the problems are novel themselves.

Keywords: hash tables, efficient algorithms, practical algorithms, average-time complexity

1 Introduction

Choosing the most appropriate algorithm for a problem requires awareness with a number
of data structures and general computational techniques that may be used to actually
implement the algorithm in some programming language. In a paper entitled “Data
Structures and Computer Science Techniques in Operations Research” [F78], Fox dis-
cussed some applications of existing algorithms and techniques—such as heaps, divide-
and-conquer and balanced trees—to well-known operational research problems including
incremental allocation, event lists in simulations, and the kth shortest path. The present
paper pursues a similar goal, albeit focusing on a specific technique that has over the
years gained increasing attention in Computer Science in general: hashing.

The hashing technique provides a way to store and retrieve data that is efficient in both
time and space. Basic theory can be found, for instance, in [CLRS01]. Numerous recent
publications deal with the technical aspects of hashing implementations, exploring new
ways to solve its intrinsic problems such as handling collisions, devising nearly ideal hash
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functions and improving their performance in a number of ways. Among them, we cite
the work on perfect hash functions and dynamic perfect hashing IN [DKMMRT94, D07],
the cuckoo hashing technique [PR04], the work on uniform hashing in [PP08] and the
ingenious use of random hypergraphs in perfect hashing described in [BPZ07]. A recent
trend is the use of machine learning tools to devise good hash functions [SH09, KD09,
WKC10, GL11, NF11, LWJJC12]. Other recent publications include [HK11, AMP12,
IP12, LLSHD13].

The hashing technique is widely used nowadays in database indexing, compiler design,
caching, password authentication, software integrity verification, error-checking, and
many other applications. Still, a seemingly uncountable number of further problems
do allow for efficient, practical algorithms through the use of hashing.

Some aspects of hashing have already been discussed in the Operations Research liter-
ature, and hashing-based improvements for known Operations Research problems are
indeed not rare. See, for instance, [J91, WZ93, CM10]. We believe, however, that the
full potential of hashing has yet to be explored in the field, allowing for plenty of further
improvements.

After briefly revisiting some concepts related to hashing (Section 2), we focus on a number
of applications (Sections 3.1–3.5), illustrating how it can be successfully employed in
conceiving efficient solutions to problems that might not suggest its use at first glance.
Though it is certainly possible to find several much more complicated examples where
hash tables may come in handy in a less-than-obvious way, we selected but a few simple
problems. We believe the examples provided are sufficiently illustrative and dispense
with otherwise naive attempts to categorize exhaustively the cases in which the hashing
technique could and should be considered.

The problems presented in Sections 3.2, 3.3 and 3.5 are original. Likewise, the solutions
proposed in this text are all, to our knowledge, yet unpublished.

2 Hashing

The central idea of the hashing technique is to use a hash function to translate a unique
identifier (or key) belonging to some relatively large domain into a number from a range
that is relatively small [LC88]. Such number corresponds to the memory address (ba-
sically the position in a “table”, the hash table) in which the object — usually a (key,
value) entry, where the value can be of any data type — should be stored. Owing to the
key-value mapping it provides, a hash table is usually called a hash map. Sometimes,
though, the object to be stored is but the key itself. In these cases, the hash table is
often referred to as a hash set.

The implementation of a hash table is usually based on an underlying array where the
objects will actually reside. In other words, the hash functions’ images are indexes of
positions in an array. Ideally, a hash function should map each distinct key onto a distinct
hash table index. This can be accomplished, in some cases, by employing advanced
techniques such as (minimal) perfect hashing [D07], where injective hash functions are
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used. When the whole set of keys to be stored is not known beforehand, it may not be
possible to define such a perfectly injective function, hence the same position in a hash
table may be assigned to different keys in a situation known as collision.

When collisions occur, it is necessary to store the objects with colliding keys in alternative
positions [K73]. Among the most widely adopted methods for resolving collisions is the
method of chaining, in which the hash table positios are regarded as buckets, each one
containing a pointer to a linked list (or other data structure) where the colliding objects
will be located. It is a simple exercise to show that the average number of elements in
each bucket is equal to the load factor of the hash table, defined as α = n/m for a hash
table with m positions and n stored objects.

The actual complexities of searches, insertions and deletions depend on the choice of the
hash function (as well as on the load factor). Because good hash functions are known
for the vast majority of data types, the simple uniform hashing assumption (SUHA),
whereby the distribution of keys into buckets approaches a uniform distribution, is often
a reasonable premise. The average case analysis in algorithms that involve hashing can
therefore rely on the SUHA and still provide a fairly accurate indicator of their practical
performances.

By using a hash function which disperses the keys with near uniform distribution along
the buckets, and provided the load factor never exceeds a certain constant (which is
achieved simply by dimensioning the hash table proportionally to the number of objects
to be stored), it can be shown that those operations are performed in O(1) time, on
average [CLRS01]. Even though a “bad” instance may demand some worst-case perfor-
mance that is quite poorer than the average, the probability of its occurrence is usually
extremely low, resulting from an unbelievably unfortunate choice of the hash function.

It is certainly not in the scope of this text the design of hash functions that are most
appropriate to each case, a subject that requires statistical tools and specific study [K75].
The algorithms presented in this paper, however, do not depend upon complicated,
custom-tailored hash functions. Backed by the SUHA, we assume the existence of a
near-uniform hash function that maps each key onto a number in the range [0,m − 1],
where m is the size of the hash table. Indeed, the vast majority of modern programming
languages provides efficient inbuilt implementations of hash tables, so the basic hashing
operations, and collision handling, and even the choice of hash functions become totally
transparent to the programmer. In other words, it is not necessary to even think about
the low-level details of the technique — the programmer is free to concentrate on the
algorithm itself. Such is the focus of this paper.

In the next sections, we look into some examples of hashing in action.
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3 Illustrative examples

3.1 The Pair Sum Problem

Given an integer k and a list A of n unordered integers, find out whether there is a pair
{x, y} ⊂ A such that x+ y = k. This is a particular case of the well-known Subset Sum
Problem, in which there are no restrictions on the size of the subsets summing k.

Unlike the Subset Sum Problem, which is NP-hard and admits a number of interesting
approximation algorithms [MT85], the Pair Sum Problem is clearly polynomial. For a
naive solution, just check all pairs (x, y) of elements of A. If x + y equals k, return yes
and stop. Although no extra space is required, the number of additions and comparisons
to be performed is O(n2) in the worst case.

We want to do better. First note that, if we select an element x of A, we can look for
its complement y = k− x in A, and the problem is now a search problem. If, for each x,
we need to traverse the whole list to check whether it contains its complement, then our
algorithm still demands O(n2) time. A better alternative would be to first sort the list
A, and then, for each x ∈ A, look for its complement using binary search, whereupon
our time complexity would be O(n log n).

In the pursuit of a linear-time algorithm, we could try and use a boolean array to represent
the elements of A: the ith position of the array contains a ‘1’ (or ‘true’) if and only if
i ∈ A. Each complement could then be looked for in constant time. However, such direct
addressing approach, in which the address of the data related to some key i is exactly i,
has a serious caveat: the space allocated for object storage must be at least as large as
the maximum possible key. In other words, the length of our boolean array would depend
on the maximum element w of A, not on the size n of A. Since w can be represented by
log2 w bits, that means exponential space.

We can use a hash set to store the elements of A. The amount of space we need is that to
store n integers (scattered along their respective buckets) plus an underlying array with
n/α positions. For a constant load factor α, that means O(n) space, while the average
time of all dictionary operations is as good as O(1) under the simple uniform hashing
assumption. The overall expected time of such algorithm—“for each element x in the
list, if k − y is in the (initially empty) hash set H, then return yes, otherwise insert x
in H”—is therefore also O(n), corresponding to the O(n) insertions and lookups in the
hash set, in the worst case.

A similar approach can be used to determine the intersection of two lists A,B. Create a
hash set H and populate it using the elements of one of the lists, say A. Next, for each
element x ∈ B, look for x in H, for an expected Θ(|A|+ |B|) overall time.

3.2 The Sum of Functions Problem

Given a set A and a function f , whose domain contains A and which can be calculated
in time O(1), find all non-trivial quadruples (x, y, z, w) of elements x, y, z, w ∈ A such
that f(x) + f(y) = f(z) + f(w).
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input : array A, function f
output: all (x, y, z, w) ⊂ A satisfying f(x) + f(y) = f(z) + f(w)

H ← a hash map with size |A|2
foreach (x, y) ⊂ A do

d← f(x) + f(y)
if d is a key stored in H then

Sd ← H.get(d) // the value stored with d in H
else

Sd ← {(x, y)}
insert (d, Sd) in H

end
Sd ← Sd ∪ {(x, y)}

end
foreach (d, Sd) ∈ H do

foreach (x, y) ∈ Sd do
for each (z, w) ∈ Sd \ {(x, y)} do

print (x, y, z, w)
end

end

end
Algorithm 1: Sum Functions(A,f)

For a trivial solution, we may simply test each quadruple of distinct elements of the
set A. We can do this in Θ(n4) time, where n = |A|.
A more efficient solution can be achieved by sorting. Pick all pairs (x, y) ⊂ A, put them
on a list L, and sort them by dx,y = f(x) + f(y). Now, all pairs of elements whose
images under f sum up to a same value d will constitute a contiguous sublist of L.
Therefore, they can be easily combined to produce the intended quadruples in constant
time per quadruple. Owing to sorting, the overall time complexity of this approach is
O(n2 log n+ q), in the worst case, where q is the number of quadruples in the output.1

Now we look into a hashing-based approach. We start with an empty hash map H. We
consider each unordered pair (x, y) of distinct elements of A, obtaining d = f(x) + f(y),
one pair at a time. If d is not a key stored in H, we insert the (key, value) pair (d, Sd)
in H, where Sd is a collection (which can be implemented as a linked list, a hash set or
whatever other structure) containing only the pair (x, y) initially. On the other hand,
if d is already stored in H, then we simply add (x, y) to the non-empty collection Sd

which d already maps to in H. After all pairs of distinct elements have been considered,
our hash map will contain non-empty collections Sd whose elements are pairs (x, y)
satisfying f(x) + f(y) = d. For each non-unitary collection Sd, we combine distinct pairs
(x, y), (z, w) ∈ Sd, two at a time, to produce our desired quadruples (x, y, z, w).

The pseudocode of the proposed hash-based solution is given as Algorithm 1.

As for the time complexity of the algorithm, each key d can be located or inserted in H

1The authors would like to thank the anonymous referee who suggested this solution.
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in O(1) average time, and each of the Θ(n2) pairs (x, y) of elements of A can be inserted
in some list Sd in O(1) time (assuming, for instance, a linked list implementation for Sd).
Thus, the whole step of populating H can be performed in Θ(n2) time on average. Now,
each of the q quadruples that satisfy the equality can be obtained, by combining pairs in
a same list, in O(1) time. Thus, the whole algorithm runs in Θ(n2 + q) expected time.

If we tried to achieve the same performance by using an array and direct addressing,
such array would have to be twice as large as the maximum element in the image of f .
The use of hashing avoids that issue seamlessly.

3.3 The Permutation Bingo Problem

In the standard game of bingo, each of the contestants receives a card with some integers.
The integers in each card constitute a subset of a rather small range A = [1, a]. Then,
subsequent numbers are drawn at random from A, without replacement, until all numbers
in the card of a contestant have been drawn. That contestant wins the prize.

In our variation of the game, the contestants receive an empty card. Subsequent numbers
are drawn at random from some unknown, huge range B = [1, b], with replacement,
forming a sequence S. The contestant who wins the game is the one who first spots a set
W = {x, y, z} of three distinct numbers such that all 3! = 6 permutations of its elements
appear among the subsequences of three consecutive elements of S. As an example, the
sequence S = (2, 19, 4, 1, 100, 1, 4, 19, 1, 4, 1, 19, 100, 192, 100, 4, 19, 2, 1, 19, 4) is a minimal
winning sequence. There is a set, namely W = {1, 4, 19}, such that every permutation
of W appears as three consecutive elements of S. Even though the set B is huge, the
distribution of the drawing probability along B is not uniform, and the game finishes in
reasonable time almost surely.

We want to write a program to play the permutation bingo. Moreover, we want our
program to win the game when it plays against other programs. In other words, we need
an efficient algorithm to check, after each number is added to S, whether S happens to
be a winning sequence.

One possible approach would be as follows. Keep S in memory all the time. After the
n-th number is added, for all n ≥ 8 (a trivial lower bound for the size of a winning
sequence), traverse S = (s1, s2, . . . , sn) entirely for each set Ri = {si, si+1, si+2} of three
consecutive distinct elements (with 1 ≤ i ≤ n− 2), checking whether all permutations of
Ri appear as consecutive elements of S. Checking a sequence of size n this way demands
Θ(n2) time in the worst case.

We can do better by performing a single traversal of S, during which we add each
subsequence of three consecutive distinct elements of S into a bin. To make sure that
two permutations go to the same bin if and only if they have the same elements (in
different orders), we may label each bin using the ascending sequence of its elements.
Now, for each subsequence of three distinct elements in S, we compute the label of its
bin, find the bin, and place the subsequence therein, making sure we do not add the
same subsequence twice in a bin. Whenever a bin has size six, we have a winner. We
can implement each bin labeled (x, y, z), with x < y < z, using an array of integers, or a
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linked list, or a hash set, or even a bit array if we care to compute the position of any
given permutation in a total order of the permutations of those elements. As a matter of
fact, the way we implement each bin is not important, since its size will never exceed six.
Moreover, rather than building the bins from scratch by traversing the whole S each time
a new element sn is added, we can keep the bins in memory and proceed to place only
each freshly formed subsequence (sn−2, sn−1, sn) into the appropriate bin—an approach
which also allows us to keep but the two last elements of S in memory.

We still have a big problem, though. Given a label, how to find the bin among the
(possibly huge number of) existing bins? If we maintain, say, an array of bins, then we
will have to traverse that entire array until we find the desired bin. It is not even possible
to attempt direct addressing here, for the range B of the numbers that can be drawn is
not only unknown but also possibly huge—let alone the number of subsets of three such
numbers! Even if we did know B, there would probably not be enough available memory
for such an array. We know, however, that the game always ends in reasonable time,
owing to an appropriate probability distribution along B enforced by the game dealer.
Thus, the actual number of bins that will ever be used is small, and available memory
to store only that number of bins shall not be an issue. We can therefore keep the bins
in a linked list, or even in an array without direct addressing. When the sequence has
size n, such list (or array) of bins will have size O(n), and the time it takes to traverse
it all and find the desired bin will also be O(n).

The use of hashing can improve the performance even further. We use a hash map where
the keys are the bin labels and the values are the bins themselves (each one a list, or bit
array etc.), so every time a new element is added, we can find the appropriate bin and
update its contents in expected constant time. Since we do not know the number of bins
that will be stored in our hash map throughout the game, and we want to keep the load
factor of the hash map below a certain constant, we implement the hash map over an
initially small dynamic array and adopt a geometric expansion policy [GT02] to resize it
whenever necessary. By doing this, the amortized cost of inserting each new bin is also
constant, and the algorithm processes each drawn number in overall O(1) expected time.

3.4 The Ferry Loading Problem

The Ferry Loading Problem (FLP) is not unknown to those used to international pro-
gramming competitions. It appears in [SR03] in the chapter devoted to dynamic program-
ming, the technique employed in the generally accepted, pseudo-polynomial solution. By
using a clever backtracking approach aided by hashing, we obtain a simpler algorithm
which is just as efficient, in the worst case. As a matter of fact, our algorithm may de-
mand significantly less time and space, in practice, than the usual dynamic programming
approach.

There is a ferry to transport cars across a river. The ferry comprises two lanes of cars
throughout its length. Before boarding on the ferry, the cars wait on a single queue in
their order of arrival. When boarding, each car goes either to the left or to the right lane
at the discretion of the ferry operator. Whenever the next car in the queue cannot be
boarded on either lane, the ferry departs, and all cars still in the queue should wait for
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the next ferry. Given the length L ∈ Z of the ferry and the lengths `i ∈ Z of all cars
i > 0 in the queue, the problem asks for the maximum number of cars that can be loaded
onto the ferry.

A brute force approach could be as follows. Starting from k = 1, attempt all 2k distribu-
tions of the first k cars in the queue. If it is possible to load k cars on the ferry, proceed
with the next value of k. Stop when there is no feasible distribution of cars for some k.
Clearly, if the number n of cars loaded in the optimal solution is not ridiculously small,
such an exponential-time algorithm is doomed to run for ages.

A dynamic programming strategy can be devised to solve the FLP in Θ(nL) time and
space. This is not surprising, given the similarity of this problem with the Knapsack
Problem [YSM00], the Partition Problem [H02], and the Bin Packing Problem [DD92].
Such complexity, as usual, corresponds to the size of the dynamic programming table
that must be filled with answers to subproblems, each one computed in constant time.

Apart from the dynamic programming approach, one could come up with a simple back-
tracking strategy as follows. Identify each feasible configuration of k cars by a tuple
(x1, . . . , xk), where xi ∈ {left, right} indicates the lane occupied by the ith car, for
i = 1, . . . , k. Each configuration (x1, . . . , xk) leads to configurations (x1, . . . , xk, left) and
(x1, . . . , xk, right), respectively, if there is room for the (k+1)th car on the corresponding
lane. Starting from the configuration (left)—the first car boards on the left lane, without
loss of generality—, inspect all feasible configurations in backtracking fashion and report
the size of the largest configuration that is found. It works fine. Unfortunately, such
approach demands exponential time in the worst case.

However, we can perfectly well identify each configuration by a pair (k, s), where k is the
number of cars on the ferry and s is the total length of the left lane that is occupied by
cars. Each configuration (k, s) leads to at most two other configurations in the implicit
backtracking graph:

• (k+ 1, s+ `k+1), by placing the (k+ 1)th car in the left lane, which is only possible
if s+ `k+1 ≤ L; and

• (k + 1, `), by placing the (k + 1)th car in the right lane, which is only possible if(∑k+1
i=1 `i

)
− s ≤ L.

If neither placement of the (k + 1)th car is possible, backtrack. Notice that a same
configuration (k+1, s′) may be reached by two distinct configurations (k, s1) and (k, s2).
It happens precisely if |s1 − s2| = `k+1. However, we do not want to visit a same
configuration twice, and therefore we must keep track of the visited configurations.

The algorithm searches the whole backtracking graph, starting by the root node (0, 0)—
there are zero cars on the ferry, initially, occupying zero space on the left lane. The
reported solution will be the largest k that is found among the visited configurations
(k, s).

As for the time complexity, the whole search runs in time proportional to the number of
nodes (configurations) in the backtracking graph. Since 0 ≤ k ≤ n, 0 ≤ s ≤ L, and both
k and s are integers, such number is O(nL), bounding the worst-case time complexity of
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our algorithm if we make sure we can check whether a configuration has already been
visited in O(1) time. If we use a 2-dimensional matrix to store the configurations, the
problem is solved. However, by doing so, we demand Θ(nL) space, even though our
matrix will most likely be absolutely sparse.

We can resort to hashing to solve that. By using a hash set to store the visited configu-
rations, we can still perform each configuration lookup in (expected) constant time, and
the required space will be proportional to the number O(nL) of configurations that are
actually visited during the search. In practice, the O(nL) time and space required by
our algorithm can be remarkably smaller than the Θ(nL) time and space of the dynamic
programming solution, specially if there are many cars with the same size.

3.5 The Trading Company Problem

Considerer the following hypothetical problem. A certain company X operates in the
stock market, entering a huge number of financial transactions—called trades—every
day. On the other side of each trade, there is some company Y , call it a counterparty
of X. To each trade of X is assigned a portfolio number, which is not a unique identifier
of the trade, and is not even unique per counterparty. In other words, trades with
different counterparties may be assigned the same portfolio, and different trades with
the same counterparty may be assigned distinct portfolios as well, according to some
internal policy of the company. Whenever X enters into a trade, a new line such as
“+ 101 25” is appended to a log file, where “+” indicates that a new trade was initiated
by X, “101” is the counterparty id, and “26” is the portfolio of that trade. At any time
during a typical day, however, a counterparty Y may withdraw all transactions with X.
From X’s standpoint, that means all trades it had entered into with Y that day are now
considered void, and a line such as “− 101” is logged. Here, the “−” sign indicates that
a cancelation took place, and “101” is the id of the counterparty the cancelation refers
to. Table 3.5 illustrates the basic structure of the log file of X.

+ 101 26
+ 2 25
+ 101 25
+ 3005 4550
− 101
+ 3005 26
+ 4 184
+ 101 4550
− 2

Table 1: Sample log file.

By the end of each day, the company X needs to determine the set of distinct portfolios
associated to trades that are still active by then, that is, the portfolios of trades that
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have not been canceled during the day. What is the most efficient way to achieve that?

Hash set. As usual, it is easy to think of different ways to process the file and come up
with the desired information. For example, we can traverse the file in a top-down fashion
(i.e. in chronological order), and, for each line “+ Y P”, we check whether there is any
line below it (i.e. logged after it) indicating the cancelation of previous trades with Y .
In case there is no such line, add P to a list of active portfolios, taking care not to add
the same portfolio twice to the list. To avoid duplicates, one can already think of using a
hash set, where portfolios are inserted only if they are not there already, something that
can be verified in constant time, on average. This approach surely works, and it is easy
to see that the time complexity of this strategy is Θ(n2), where n denotes the number of
lines in the log file.

Yet the file can be really huge, and determining the active portfolios is a time-critical
operation for X. A quadratic-time algorithm is not good enough.

Two mirroring hash maps. Consider the use of two hash maps, this time: (i) The
first one will hold a counterparties-by-portfolio map: the keys are portfolio numbers, and
the value stored with each key P is a list containing the counterparties Y of X for which
there are active negotiations under that portfolio P . (ii) The second is a portfolios-by-
counterparty hash map: the keys are the counterparties of X, and the values associated
with each counterparty Y is a list containing the portfolios assigned to active negotiations
with that partner.

The file is traversed top-down. Each line with a “+” sign, be it “+ Y P”, triggers two
updates in our data structure: the first is the inclusion of Y in the list of counterparties
associated with portfolio P in the counterparties-by-portfolio hash map (the key P will be
inserted for the first time if it is not already there); the second change is the inclusion of P
in the list of portfolios associated with counterparty Y in the portfolios-by-counterparty
hash map (the key Y will be first inserted for the first time if it is not already there).

Whenever a line with a “−” sign is read, be it “− Y ”, we must remove all occurrences of
Y from both tables. In the second, portfolios-by-counterparty hash map, Y is the search
key, hence the bucket associated to Y can be determined directly by the hash function,
and the list of portfolios associated to Y can be retrieved (and deleted, along with Y )
in average time O(1). In counterparties-by-portfolio, however, Y can belong to lists
associated to several distinct portfolios. To avoid traversing the lists of all portfolios,
we can use the information in the first, portfolios-by-counterparty map (sure enough,
before deleting the key Y ) so we know beforehand which portfolios will have Y on their
counterparty lists. We may thus go directly to those lists and remove Y from them,
without the need to go through the entire table. If the list of counterparties associated
to a portfolio P becomes empty after the removal of Y , then we delete the portfolio P
from that first hash map altogether.

After all lines of the file have been processed, just return the portfolios corresponding to
keys that remain in the first, counterparties-by-portfolio hash map.

Figure 1 illustrates the data structures used in this solution. Note that, for clarity,
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different keys in the same bucket (a collision in the hash table) are not being even
considered. As already mentioned, collisions (as well as the choice of the hash function
and other technicalities) are being taken care of by the lower level hash implementation,
allowing us to focus on the high level usage of it, as happens most of the time in practice.
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Figure 1: Hash maps: (a) counterparties-by-portfolio; (b) portfolios-by-counterparty.

Determining the lists from which a certain counterparty Y must be removed (due to
a cancelation read from the file) can be made in average O(1) time per list, and each
counterparty can be removed at most once for each line of the file that inserted it there.
So far so good. However, in order to find Y in each list (something we also need to do
by the time we insert Y , so we do not have the same counterparty appear more than
once in the same list), we still need to traverse the whole list, which certainly increases
the computational time. Since we wish we can cope with the whole file processing task
in linear time, we must think of a remedy to this.

Multi-level hashing. So our problem is the time-consuming task of traversing whole
lists to locate a single element. We therefore want to try and replace those lists with more
performatic structures, such as binary search trees, or, better yet... hash sets! In other
words, the value associated with each key P in the counterparties-by-portfolio hash map
will be, instead of a list, a hash set whose keys are the ids of the counterparties associated
with P (see Figure 2). The same goes for the second, portfolios-by-counter-party hash
map, where portfolios will be stored in a hash set associated to each counterparty Y .
Thus, counterparties and portfolios can be included and removed without the need to
traverse possibly lengthy lists, but in average constant time instead. Since the cost of
processing each line is now O(1) (due to a constant number of hash table dictionary op-
erations being performed), the whole algorithm, implemented this way, runs in expected
linear time in the size of the file. (Sure enough, the same time complexity could have
been achieved, in the previous approach, by making a cumbersome use of pointers across
the hash tables.)

Bottom-up traversal (bare creativity). The most elegant solution for the Trading
Company Problem, though, consists in reading the log file in a bottom-up fashion (i.e. in
anti-chronological order), avoiding the need to process trades that would be, later in the
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Figure 2: Multi-level hashing: (a) Hash map of counterparties (represented by hash sets)
per portfolio; (b) Hash map of portfolios (represented by hash sets) per counterparty.

day, canceled anyway.

Note that, as the file is being read upwards, the first line found with a “−” sign, be
it “− Y ”, indicates the cancelation of all trades company X had entered into with
counterparty Y earlier in the day. Thus, such a line LY in the log file partitions all other
lines associated to Y into two groups: those which occurred chronologically before LY

(and which have not been processed yet, since they appear above it in the file), and those
which occurred chronologically after LY (and therefore have already been processed).
From that moment on, the lines of the former group may be simply ignored, since the
corresponding trades would not be active by the end of the day anyway. On the other
hand, all lines regarding Y that have already been processed (those in the latter group)
correspond to trades that are active indeed by the end of the day, since they appear, in
the log file, chronologically after the last cancellation involving Y .

We can therefore use again two hash sets: one for the “active portfolios”, whose keys
will be returned by the end of the algorithm execution, and another for the “bypassed
counterparties”, that is, the counterparties for which a cancelation line has already been
read in the bottom-up traversal of the file. With such a simple structure, each “− Y ” line
triggers the insertion of Y into the bypassed counterparties hash set (if it is not already
there), and each “+ Y P” line either triggers the insertion of P in the active portfolios
hash set, in case it is not already there and Y is not in the bypassed counterparties table;
otherwise the line is ignored.

This time again, each line gives rise to a constant number of average constant-time
operations, but in a much simpler fashion. The whole process runs in O(n) time, where
n is the number of lines in the log file.

Quite surprisingly, however, this latter solution can be made even better. By keeping
track of the number p of bypassed counterparties and comparing it, at each processed
line, against the total number c of counterparties the company X has traded with during
that day (such piece of information can easily be kept track of during the generation of
the log file), the bottom-up traversal can perfectly halt if ever p becomes equal to c. If
the rate of cancelations is high, then most probably the algorithm stops before all n lines
have been processed, for a practical sub-linear-time execution.
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4 Conclusions

The use of appropriate data structures is one of the main aspects to be considered in the
design of efficient algorithms. Certain structures, however, are somewhat stigmatized,
restricted to particular applications and some classic variants. Though the use of hash
tables in Operations Research is not new (some nice improvements based on hashing
have been reported in the literature for known OR problems), we believe its possibilities
are quite often neglected—or overlooked—by part of the OR community.

It is certainly important to add some creativity to one’s theoretical toolset when consider-
ing the choice of data structures. Hash tables, however, bear such an immense likelihood
of producing efficient, practical algorithms, that one should always feel inclined to at
least consider them, even in applications that, at a first glance, do not seem to suggest
their use. In this paper, we illustrated the use of hashing to produce neat, efficient solu-
tions to simple, didactic problems, in a selection we hope to have been as instructive as
motivating.

Though we have not included a whole section dedicated to computational results, im-
plementing the algorithms we discussed is straightforward. We encourage the reader to
do so, specially if he or she is not too familiar with formal complexity theory. As an
example of the kind of result the reader should be able to produce, Table 2 shows a
comparison between the naive algorithm and the algorithm based on hashing discussed
in Section 3.1. The source code, in Python, can be found in https://www.dropbox.com/

s/wm6goozuoq27lh6/pair_sum.py?dl=0. It is noteworthy that the exact hash function
that was used has not even be specified in the source code, which relied on inbuilt,
general-purpose hash functions.2

Table 2: Average running times (and standard deviations), in mili-seconds, for input lists
of size n in the Pair Sum problem. For each value of n, we ran the algorithms on 100
lists of n integers chosen uniformly at random in the range [1, 108].

n without hashing with hashing
250 13.754 (2.340) 0.095 (0.029)
500 53.312 (3.653) 0.185 (0.040)
1000 214.859 (9.441) 0.356 (0.092)
2000 871.815 (33.956) 0.722 (0.130)
4000 3453.420 (85.533) 1.345 (0.234)
8000 13804.324 (320.425) 2.706 (0.346)

2The actual implementation of Python hash tables, also known as dictionaries or dicts, can be found in
https://hg.python.org/cpython/file/52f68c95e025/Objects/dictobject.c, where a detailed account
on the employed hash functions and the collision resolution scheme is also given.
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