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Abstract

A graph G = (V,E) is graceful if its vertices can be embedded in the interval

[0, |E|] in such a way that: (1) all vertices have integer coordinates; (2) no two

vertices share the same coordinate; and (3) the distances in the line between

two adjacent vertices in the graph are all distinct. We show that the generalized

cone graph Cp + Iq (the join of a cycle and an independent set) is graceful for

p ∈ {9, 13, 17} and q ≥ 1. We also show that Cp + Iq is not graceful for several

odd values of q with p ≡ 2 (mod 4), disproving a conjecture of Brundage. Our

results suggest a conjecture towards the characterization of graceful generalized

cone graphs.

Keywords: distance geometry, computational proofs, generalized cone graphs,

graceful labeling

1. Introduction

The fundamental problem in Distance Geometry is to find a set of points in

a geometric space (typically the 3-dimensional Euclidean space) that conform

to certain constraints given in terms of distances between pairs of points. In the

classic version of the problem [16], the input is a graph in which each edge is
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labeled with the distance that its corresponding end vertices must have in the

geometric space. However, Distance Geometry provides a broader framework

to study classic graph-theoretical problems [14, 18]. Some examples follow.

• Recognizing whether a given graph is a unit disk graph (i.e., whether it

is the intersection graph of congruent disks in the plane) is equivalent to

asking for an embedding of the vertices in the plane such that two vertices

are at distance at most 1 if, and only if, they are adjacent in the graph [5].

• The k-colorability problem takes as input a graph and an integer k > 0,

and asks for an embedding of the vertices in the interval [0, k] with integer

coordinates such that the distance between vertices that are adjacent in

the graph is strictly positive [7].

• The list coloring problem is similar to the k-colorability problem, except

that a list of allowed coordinates is assigned to each vertex as part of the

input [6].

Differently from the fundamental Distance Geometry Problem, in which pre-

cise distances are given, the input of the problems above comprises sets (either

discrete or continuous) of acceptable distances between points corresponding to

vertices that are adjacent in the graph.

In the present work, we consider the Graceful Labeling problem under the

Distance Geometry standpoint. The input is a graph G = (V,E), and the goal

is to find an embedding of its vertices in the interval [0, |E|] such that:

• all vertices have integer coordinates;

• no two vertices are assigned the same coordinate; and

• the distances between vertices that are adjacent in the graph are all dis-

tinct.

Note that graph labeling is a discrete problem in the sense that the space

of possible solutions is finite. It resembles the famous Discretizable Molecular
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Distance Geometry Problem [15] (DMDGP), which is a particular case of the

Distance Geometry Problem formulated as a search in a discrete space. More

precisely, a DMDGP instance consists of a graph whose vertices can be ordered

in such a way that any four consecutive vertices induce a complete graph—

hence, the possible 3-dimensional positions of each vertex consist of only two

positions. The discrete aspect of the problem suggests a computational approach

to search for solutions, such as the branch-and-prune algorithm by Lavor et

al. [15]. While the graph labeling problem is somehow analogous to the DMDGP,

computational algorithms for graph labeling have to deal with the fact that the

solution space is much larger, since the number of possible positions for each

vertex is O(|E|), not O(1) as in the DMDGP. In the present work, we also

follow a computational approach based on a branch-and-prune algorithm to

implicitly enumerate all the possible solutions of an instance, allowing not only

to determine if a graph is graceful but also to count the number of solutions

and to determine relevant properties of the solutions.

Graceful labeling was originally introduced in 1966 by Rosa [20]. The famous

Graceful Tree Conjecture states that every tree has a graceful labeling. The va-

lidity of the conjecture would immediately imply another conjecture by Ringel:

for any tree T with n vertices, the complete graph K2n−1 can be decomposed

into 2n − 1 trees isomorphic to T . The relevance and difficulty of the graceful

labeling problem is widely recognized in the complexity and combinatorics com-

munities. Indeed, the Graceful Graph Problem, i.e., deciding whether a graph

is graceful or not, appeared as the problem of the month in David S. Johnson’s

NP-completeness Column of 1983 [12] and it was revived as a long-standing

open problem in the NP-completeness Column of 2005 [13]. After fifty years of

its statement, the Graceful Tree Conjecture and the Graceful Graph Problem

remain open, despite the large number of papers devoted to the subject.

Besides their theoretical impact and scientific challenge, graceful labelings

have numerous applications in diverse fields. In 1977, Bloom [2] described a

series of applications of graceful labelings to code design, X-ray crystallographic

analysis, circuit layouts design, and communication network addressing.
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Considering the theoretical impact, the present and the potential applica-

tions of graph labelings, it is not surprising that much research is devoted to

solve the recognition problem at least partially—in particular, investigating the

Graceful Graph Problem on restricted graph classes. Here, we consider the gen-

eralized cone graphs, a graph class defined by the join Cp + Iq of a cycle graph

Cp and an independent set Iq, with p ≥ 3 and q ≥ 0.

For the sake of clarity, we provide next the classic definition of graceful

labeling. Let G = (V,E) be a graph with n vertices and m edges. A graceful

labeling of G is an injective vertex labeling f : V → {0, 1, . . . ,m} such that the

resulting edge labeling fγ : E → {1, 2, . . . ,m} with fγ(uv) = |f(u) − f(v)| is

also injective. A graph that admits a graceful labeling is called a graceful graph

(see Figure 1).
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Figure 1: A graceful labeling of C4 + I2.

Throughout the text, let V (Cp + Iq) = {u0, u1, . . . , up−1, v0, v1, . . . , vq−1},

where uk is a vertex from the cycle Cp and vk is a vertex from the independent

set Iq. For simplicity, the set of integers {a, a+ 1, a+ 2, . . . , b} is denoted [a, b].

From now on, we call generalized cone graphs as cone graphs, or simply cones.

2. Preliminary results

We start with a well known fact about graceful labeling in general [11, 20].

Lemma 1. All Eulerian graphs with m ≡ 1, 2 (mod 4) are not graceful.
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Lemma 1 is known as the parity condition. For cycles, the parity condition

actually characterizes gracefulness [20], i.e., the cycle Cp is graceful if, and only

if, p ≡ 0, 3 (mod 4). For cone graphs, the following holds:

Proposition 1. The cone graph Cp + Iq is not graceful for p ≡ 2 (mod 4) and

q ≡ 0 (mod 2).

The join of a cycle on p vertices and a singleton graph is the wheel graph

Wp = Cp + I1. Frucht [9] showed that all wheel graphs are graceful. The

graphs Cp + I2 are known as double cones. It is known that many of them are

graceful [1, 10, 19], but it is still unknown whether they are all graceful except

for those eliminated by the parity condition.

For generalized cone graphs, Bhat-Nayak and Selvam [1] showed that Cp+Iq

is graceful for p ≡ 0, 3 (mod 12) and q ≥ 1. They also proved that Cp+ Iq with

p ∈ {4, 7, 11, 19} are graceful for all q ≥ 1, and they presented a graceful labeling

for the double cones C5 + I2 and C9 + I2. Later on, Brundage [3] presented a

graceful labeling for C6+I3 and showed that C5+Iq and C8+Iq are graceful for

all q ≥ 1. Next, we show Brundage’s construction to obtain graceful labelings

for these two families of cones.

Proposition 2. The cone graphs C5+ Iq and C8+ Iq are graceful for all q ≥ 1.

Proof. Brundage gives a graceful labeling f : V → [0,m] for each case.

For C5 + Iq, label the vertices of C5 with 0,m,m− 3, 3,m− 1 consecutively

along the cycle, where m = 5(q + 1) is the total number of edges. Now, label

the vertices of Iq as follows:

f(vk) =

2, if k = 0;

5k + 3, if k = 1, 2, . . . , q − 1.

Thus, for a vk, 0 < k < q, as 3 < 5k + 3 < m − 3, its incident edges

have labels 5k + 3,m − (5k + 3), (m − 3) − (5k + 3), 5k, (m − 1) − (5k + 3),

which are all distinct since they have different residues modulo 5: 5k + 3 ≡ 3

(mod 5),m − (5k + 3) ≡ 2 (mod 5), (m − 3) − (5k + 3) ≡ 4 (mod 5), 5k ≡ 0

5



(mod 5), (m−1)− (5k+3) ≡ 1 (mod 5). It is now easy to see that the labels in

the edges incident with vk, with 0 < k < q, cover the whole interval [4,m− 7].

Along with the labels of the edges in C5 (m, 3,m − 6,m − 4,m − 1) and those

incident with v0 (2,m−2,m−5, 1,m−3), all the labels in [1,m] appear exactly

once. Thus, f is a graceful labeling of C5 + Iq.

For C8+Iq, label the vertices of C8 with 0,m, 2, 3,m−2, 1,m−3,m−1 along

the cycle, where m = 8(q + 1), and label each vk in Iq with 4k + 6. The proof

that this is indeed a graceful labeling is analogous to the previous case.

Remark 1. Note that the graceful labeling for some families of cone graphs are

often not unique. For instance, a graceful labeling for C8 + Iq distinct from the

one given by Brundage goes as follows. Label C8 with 0,m, m2 ,
3m
4 + 1, m2 +

1, 3m
4 , m4 − 1,m− 1, and label Iq with 2k+2 for 0 ≤ k < q, where m = 8(q+1).

3. New families of graceful and non-graceful cones

We present results concerning both graceful and non-graceful cone graphs.

Proposition 3. The cone graphs C9 + Iq, C13 + Iq, and C17 + Iq are graceful

for all q ≥ 1.

Proof. Label the independent set Iq as follows, where p is the size of the corre-

sponding cycle:

f(vk) =

1, if k = 0

pk + 4, if k = 1, 2, . . . , q − 1

As for the cycle, label its vertices as follows along the cycle:

C9: 0,m, 5,m− 7, 3,m− 8,m− 3, 4,m− 2;

C13: 0,m,m− 8, 6,m− 9, 10,m− 6, 7,m− 4,m− 7, 5,m− 1,m− 3;

C17: 0,m, 7,m−8,m−3, 14,m−11, 9,m−13, 5,m−5,m−15, 12,m−7,m−

10, 3,m− 2.
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The graceful labelings given in the proof of Proposition 3 suggest that every

cone graph with p ≡ 1 (mod 4), p ≥ 9, admits a graceful labeling such that the

independent set is labeled that way.

As a matter of fact, looking at the other classes of equivalences modulo 4,

we found out a similar property. For p ≡ 0 (mod 4), it seems that Cp+ Iq has a

graceful labeling in which f(vk) =
p
4 (k + 1) for 0 ≤ k < q. This can be verified

for p = 4 [1] and p = 8 (see Remark 1). Similarly for p ≡ 3 (mod 4), p ≥ 7,

the cone graph Cp + Iq seems to have a graceful labeling with f(v0) = 2 and

f(vk) = pk + 4 for 1 ≤ k < q.

As for p ≡ 2 (mod 4), we have a completely different behavior, starting with

even values of q, which are all non-graceful (see Proposition 1). Brundage [3]

actually conjectured that the non-graceful cone graphs given by the parity con-

dition would be the only non-graceful ones. However, we have disproved his

conjecture by showing that C6 + I5, a non-Eulerian graph, is not graceful. Our

findings go further by establishing that C6 + Iq is not graceful for 5 ≤ q ≤ 35.

Furthermore, although C10 + I3 and C10 + I5 are graceful, C10 + Iq is not

graceful for 7 ≤ q ≤ 25. Likewise, C14+I3 and C14+I5 are graceful, but C14+I7

and C14 + I9 are not. The following two propositions summarize these findings.

Proposition 4. The cone graphs C10+Iq and C14+Iq are graceful for q = 3, 5.

Proof. We have the following labelings where the first p labels are from the cycle

and the last q are from the independent set.

C10 + I3: 0, 40, 25, 3, 33, 13, 6, 29, 10, 21; 37, 38, 39.

C10 + I5: 0, 27, 1, 57, 14, 13, 2, 16, 3, 15; 32, 23, 51, 55, 60.

C14 + I3: 0, 56, 6, 1, 28, 5, 2, 30, 34, 3, 33, 11, 22, 55; 40, 47, 54.

C14+I5: 0, 84, 33, 17, 82, 34, 47, 54, 64, 68, 69, 32, 49, 83; 14, 11, 8, 5, 2.

Proposition 5. The cone graphs C6 + Iq, 5 ≤ q ≤ 35, C10 + Iq, 7 ≤ q ≤ 25,

C14 + I7, and C14 + I9 are not graceful.

The proof of Proposition 5 was achieved computationally.1 We devised an

1The code can be found at http://github.com/rodrigozhou/graceful-cone-graphs.
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implicit enumeration algorithm with adequate pruning, which managed to ex-

haust all possible labelings for the cone graphs in Proposition 5. None of them

was found to be graceful.

Our backtracking-based approach is similar to the one employed by Fang [8].

At each iteration, label a yet unlabeled vertex so that a new edge label appears,

making sure that edge labels are revealed in strictly descending order to reduce

branching on the search trees.

Besides the “descending order of edge labels” idea, the symmetries inherent

to cone graphs played a fundamental role in pruning the search tree, avoiding

that our search went through equivalent/symmetric labelings repeatedly. Also,

the complementarity property of graceful labelings (if every vertex label ` is re-

placed with m− ` in a graceful labeling, the resulting labeling is also graceful)

was instrumental in reducing the computational time of our algorithm. Indeed,

if our search algorithm were based on plain brute force, the combinatorial explo-

sion of the search space, so common in backtracking-based explorations, would

probably have made any useful outcome out of reach. Next, we list the observa-

tions included in the search algorithm, which allowed it to run in a reasonable

amount of time for the considered instances.

Force f(u0) = 0 without loss of generality. Because the number of available edge

labels is equal to the number of edges, the edge labeling function fγ produced

by a graceful labeling is not only injective but also an onto function. This means

that, in a graceful labeling, every possible edge label from 1 to m must appear as

a label of some edge. Since an edge label is obtained as the absolute difference

of the labels of its incident vertices, it follows that the vertices labeled 0 and

m must be adjacent in the graph (otherwise no edge would be assigned label

m). Since, in a generalized cone graph, all edges are incident with at least one

vertex of the cycle, one of the vertices of the cycle must be labeled 0 or m. By

symmetry, let u0 be that vertex. Now, the complementarity property allows us

to assume without loss of generality that f(u0) = 0.
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Establish an order of labeling in Iq. Since all vertices in the independent set

are indistinguishable between themselves (both from the standpoint of some

vertex in the independent set, since there are no edges between any of them,

and from the standpoint of some vertex in the cycle, since each vertex in the

cycle is adjacent to all vertices in the independent set), we may assume an order

in which the vertices of Iq are labeled. This prevents looking for labelings that

are identical up to a permutation of the vertices in Iq.

Just two candidate recipients for vertex label m. Assuming f(u0) = 0, the vertex

label m must be assigned to a vertex that is adjacent to u0, i.e., to either u1,

up−1 or vk for some k ∈ [0, q − 1]. Again owing to the symmetries in both the

cycle and the independent set, we can narrow down our options, without loss of

generality, to only two among those vertices, say u1 and v0.

Constrained recipients for edge label m − 1. If, in the previous step, we chose

vertex u1 to receive label m, then, because we had already assigned label 0 to

vertex u0, the edge label m−1 can only appear on an edge that is incident with

either u1 (a neighbor of u1 would receive label 1) or u0 (a neighbor of u0 would

receive label m− 1). Owing to the symmetries (rotation, reflection) of the cycle

and the complementarity property, these two cases are actually equivalent. We

can therefore consider, without loss of generality, that the edge labeled m − 1

will be incident with u1. We must now pick a neighbor of vertex u1 to assign

label 1. Since vertex u0 is already labeled 0, the possible neighbors are u2 or vk.

However, by the symmetry of the independent set, we can consider v0 as the sole

candidate to receive label 1, and our search is limited to just two cases. If, on

the other hand, we chose vertex v0 to receive label m, then we must either assign

label m− 1 to a neighbor of u0 (namely u1 or v1 without loss of generality), or

assign label 1 to a neighbor of v0 (namely uk, where we can impose 1 ≤ k ≤ bp2c

owing to the reflection symmetry of the cycle).
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4. Future directions

Table 1 describes the state of the art with regard to the gracefulness of

generalized cone graphs. We summarize our contribution as follows:

• We spotted a number of non-graceful cones for which the parity condition

does not apply, disproving a conjecture by Brundage.

• We exhibited graceful labelings for three infinite subfamilies of cone graphs,

namely C9 + Iq, C13 + Ip, and C17 + Iq, for all q ≥ 1.

• We asserted the gracefulness of C10 + I3, C10 + I5, C14 + I3, and C14 + I5.

q

p
3, 4 5 6 7, 8 9 10 11, 12 13 14 comments

0 Y N N Y N N Y N N Y iff p ≡ 0, 3 (mod 4)

1 Y Y Y Y Y Y Y Y Y Y ∀p

2 Y Y N Y Y N Y Y N ?, N ∀p = 6 + 4k

3 Y Y Y Y Y Y Y Y Y ?

4 Y Y N Y Y N Y Y N ?, N ∀p = 6 + 4k

5 Y Y N Y Y Y Y Y Y ?

6 Y Y N Y Y N Y Y N ?, N ∀p = 6 + 4k

7 Y Y N Y Y N Y Y N ?

8 Y Y N Y Y N Y Y N ?, N ∀p = 6 + 4k

9 Y Y N Y Y N Y Y N ?

10 Y Y N Y Y N Y Y N ?, N ∀p = 6 + 4k

11 Y Y N Y Y N Y Y ? ?

comments Y
Y

∀q ≥ 1

?,

N ∀q

even

Y
Y

∀q ≥ 1

?,

N ∀q

even

Y
Y

∀q ≥ 1

?,

N ∀q

even

?,

N ∀p = 6 + 4k, q even

Y ∀p ≡ 0, 3 (mod 12)

Table 1: Gracefulness of Cp + Iq (shaded entries are new results).

Although our findings do not characterize the class of graceful generalized

cone graphs, they do suggest directions on where to look for graceful labelings

in the case of p 6≡ 2 (mod 4). They are summarized by Conjectures 1 and 2.

Conjecture 1. For p 6≡ 2 (mod 4), p ≥ 7, there exists a graceful labeling of

Cp + Iq such that:

• if p ≡ 0 (mod 4), then f(vk) =
p
4 (k + 1) for 0 ≤ k < q;
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• if p ≡ 1 (mod 4), then f(v0) = 1 and f(vk) = pk + 4 for 1 ≤ k < q;

• if p ≡ 3 (mod 4), then f(v0) = 2 and f(vk) = pk + 4 for 1 ≤ k < q.

Conjecture 2. For every p ≡ 2 (mod 4), there exists a qp > 1 such that the

cone graph Cp + Iq is not graceful for all q ≥ qp.

Another intriguing pattern we may report after having observed all existing

graceful labelings for a fixed Cp + Iq is that the graphs C9 + Iq, for 5 ≤ q ≤ 15,

have a unique graceful labeling (short of symmetries and complementarity).

This makes us suspect that the graceful labeling given by Proposition 3 is unique

for C9+ Iq, q ≥ 5, and makes us wonder if there are any other cone graphs with

unique graceful labelings.

An interesting problem, as a possible approach to the Graceful Tree Conjec-

ture, is to decide if a graceful graph is 0-rotatable [4, 17]. For cone graphs, it

suffices to check if there is a graceful labeling in which the vertex label 0 (or m)

is in the independent set. So far, the only non-0-rotatable graceful cone graphs

we know of satisfy p ≡ 1 (mod 4).
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