
Partial knowledge transfer and almost fair

exchange of secrets

Raphael Machado, Davidson Boccardo, Vińıcius de Sá, Jayme Szwarcfiter

August 30, 2015

Abstract

Partial knowledge transfer refers to the ability of “proving” to third
parties that a set of bits if part of the solution of a problem in such a
way that the third party learns nothing more than this set of bits. The
concept of partial knowledge transfer was recently defined and applied
to the secure exhibition of digital watermarking [5]. In the present work
we propose a novel partial knowledge transfer scheme that allows a party
to exhibit part of the solution of any NP problem. The method is then
applied to de development of fair exchange of secrets protocol. Our con-
tributions are manifold:

1. We improve the partial knowledge transfer scheme so that it can rely
only on the validity of the factoring assumption.

2. We show the equivalence between two variants of the factoring as-
sumption.

3. We devise a partial knowledge transfer scheme that allows to securely
exhibit part of the solution of any NP problem.

4. We propose the use of the improved partial knowledge transfer scheme
in an “almost fair” protocol for the exchange of secrets.

Keywords: security protocols; fair exchange; zero-knowledge proof; fac-
toring assumption.

1 Introduction

Fairness is an important requirement in exchange electronic protocols. It arises
when two parties are willing to exchange digital items, but do not trust each
other. In order to avoid that some of the parties interrupt the protocol just after
receiving the desired digital item, it is important that the “exchange” process
is “atomic”, i.e., all the items are exchanged at once. Some examples will help
to clarify the concept.

Contract signing. Suppose Alice and Bob agreed to sign a contract by which
Alice will sell her company to Bob by a price of US$500,000.00. If Alice
just sign a term sheet and send it to Bob, then Bob could wait some days

1

(weeks, months,...) and see how the company behaves. If the company
goes well — for instance, the profits increase — Bob can sign the contract
and buy the company. If, however, the company profits go down, then
Bob can simply rip the contract and forget he once tried to make business
with Alice. An analogous problem would happen if Bob signs first.

Certified message. Suppose Alice is willing to send some information to Bob,
but this information is sensitive, so that is important that Alice receives
back from Bob a receipt evidencing that Bob indeed had access to that
information. Such requirement is typical from scenarios where Alice needs
to share some confidential intellectual property with Bob (in case of dis-
closure of the intellectual property, Alice can prove that Bob had access
to that information). Once again, since Bob is not trusted, Alice can not
simply send the secret and “hope” that Bob will send a receipt in turn;
Bob could simply take the information and send nothing back. Conversely,
Bob cannot sign a receipt of something he did not yet receive.

Selling of secret. Alice is the owner of a logistics company and Bob discovered
a new truck routing transportation scheme that would allow Alice to save
5% of the costs. Alice agree to pay a million of dollars for such information,
but Bob can not simply send the “solution” and wait that Alice be honest
and sign a check of one million of dollars in name of Bob. Analogously,
Alice will not give so much money to Bob without being sure she will
receive the solution to her company problems.

Exchange of secrets. In a similar way, Alice has a secret that interests to Bob,
and Bob has a secret that interests to Alice. They are willing to exchange
the secrets, but no one wants to be the first to deliver the information.

In all the above scenarios, the party that takes the first step — signing
a document or sending an information — is in clear disadvantage face to the
other party. It is desirable that no one has to “make the first step”, and that
the involved items are exchanged all at once. This is what we mean by a
fair protocol, i.e., no party can gain an advantage over the other parties by
misbehaving, misrepresenting or by prematurely aborting the protocol. The
easiest way of assuring that an exchange is fair in this sense is by recurring
to a Trusted Third Party (TTP): in the first stage both Alice and Bob deliver
their items to the TTP who will exchange the items in a second stage. The
scheme is secure, as long as the TTP is honest and unquestionable. However,
such a protocol has the several disadvantages of any protocol that requires the
involvement of a third party in each and every exchange. Hence, a lot of effort
has been done in the development of more practical fair exchange protocols.

It is important to mention that a “perfect” fair exchange — i.e. a determin-
istic protocol that guarantees that two items are simultaneously exchanged — is
impossible to achieve in a two-parties protocol without a TTP. The fact is that
the interaction between the parties involved in a protocol is “discrete”, in the
sense that, at each step, a message is send in one direction. Hence, at each step

2

of a protocol, only one party can gather some information, and is impossible
that two parties gain information simultaneously. So, different approaches has
been taken in order to achieve some level of fairness in exchange protocols. Such
approaches involve the use of distinct types of trusted third parties — either
online or offline —, the idea of limiting the advantage each party can have over
the other — such as the probability of being bound to a contract —, or gather-
ing evidences about the execution of the protocol, so as to allow an a posteriori
punishment of the party that do not follow the protocol, as we discuss below.

In the present work, we show that the recently proposed concept [5] of “par-
tial knowledge transfer” can be used to achieve “almost fairness” in exchange
protocols. The proposed protocol [5] for partial knowledge transfer allows to
prove that a set of binary digits is the prefix of one of the factors of a number.
The goal [5] is to use the partial knowledge transfer to prove that a software was
watermarked, without needing to exhibit the precise position of the watermark
(because this could allow the removal of the watermark). In the present work
we construct an analogous scheme that allows to gradually exhibit the solution
of any NP problem. The idea is to “encode” the solution of the NP problem as
a “sub-solution” of a hypothetically harder problem — in our case, the factor-
ing of a composite number that is the product of two large prime numbers. In
practice, we use polynomial-time reductions to convert any NP-complete prob-
lem to a logic satisfiability problem whose solution is encoded as a bitstream
that is the prefix of a prime number p which in turn is multiplied by another
prime number q, obtaining n = pq. Then, a partial knowledge transfer scheme
is executed to transmit the bits of q one at a time, until n can be factored and p
is recovered — hence the solution of the satisfiability problem and therefore of
the original NP problem. We say that our protocol achieves “almost fairness”
in the sense that, in some moments, one of the parties is “one bit ahead of the
other party”.

2 Background

2.1 Related Work

Fair exchange protocols have been studied in the context of electronic mail
certified delivery, digital signatures exchange, contract signing, and exchange
of documents. One key aspect that distinguishes the several proposed fair ex-
change protocols is whether they guarantee a priori fairness — also called strong
fairness — or they rely on gathering of information that allow an a posteriori dis-
pute resolution by an adjudicator, in case one of the participants do not behave
properly — also called weak fairness. One interesting aspect that makes the
problem of exchange of secrets particularly challenging is that other exchange
protocols — usually involving digital signatures — assume the existence of a
third party (notary, lawyer, judge) that will define if a signature, a document, a
check or a contract is valid. In other words, people sign documents because the
signature is a proof to be shown to a notary, a lawyer or a judge. In the case

3

of the exchange of secrets, the exchange is eminently two-party: Alice has an
information that interests to Bob and Bob has an information that interests to
Alice. It can even be the case that the exchanged information is invaluable, and
there is nothing to do face to a judge if you already lost such an information.

A classic method for the fair exchange of secrets in the one of Blum [1],
which show how two parties, each one having the knowledge of a factor of a
distinct composite number, can exchange their factors bit by bit. The method
of Blum allows that each bit is sent together with a “proof” that it is a bit of a
factor of the composite number. The fact that the factors are exchanged bit by
bit guarantees that each party has a limited advantage over the other during the
execution of the protocol. The fairness is guaranteed as long as the parties have
comparable computing power (for otherwise, one of the parties — say, the one
that can run 260 operations within a reasonable time — could stop the protocol
when there are 60 bits remaining).

The present work is closely related to the method of secret key exchange of
Blum [1]. Indeed, the method of Blum [1] allows to parties to exchange prime
factors of composite numbers “bit by bit”, in such a way that each transmitted
bit goes together with a proof that it is indeed a bit of a factor of the composite
number. Our method also rely on the “bit by bit transmission” of factors, but
the scheme allows to prove not only that the bits are indeed bits of a factor,
but also that one of the factors of the composite number somehow “encode”
the solution of an NP problem. Our method is therefore much more general,
allowing the exchange of any secret that is the solution of an NP problem.

2.2 Partial Knowledge Transfer

In Kilian’s doctoral thesis [4] the following problem is described. Bob wants to
factor a number n of 500 bits which is known to be the product of five prime
numbers of 100 bits. Alice knows one of the factors, denoted q, and is willing to
sell 25 bits to Bob. Kilian proposes a method that allows Bob to be sure that
Alice indeed knows one of the factors of n, and it still allows that assurance
happens upon individual bits of q. The proposed scheme not only allows the
disclosure of some bits of q but also uses commitment schemes for individual
bits of q in order to ensure that these bits will not be disclosed without the
consent of Alice. Finally, it allows the use of oblivious transfer in a way Alice
is unaware of bit sets actually disclosed.

Machado et al. [5] describes a simple scheme by which one can prove that
a set of bits is indeed one of the factors of a composite number. Such scheme
preclude the use of commitment schemes or oblivious transfer, being based on
the idea that the multiplication of primes can be seen as a logical operation,
where each bit of the product is indeed a logical function over the bits of the
factors. For the sake of completeness, we briefly describe Machado et al. [5]
partial knowledge transfer in what follows.

4

(a) Full adder. (b) 4-bits Adder.

Figure 1: Building an adder.

EQUICOMPOSITE problem

We claim that the problem of determining if a number is composite can be re-
duced to the problem of determining if a logical expression is satisfiable — the
well-known SAT Problem [3]. More precisely, we consider the EQUICOMPOS-
ITE variant of the factorization problem. The EQUICOMPOSITE Problem
asks whether an integer n is equicomposite, i.e., n can be written as a product
of two factors, each one with the most dlog2(n)/2e bits.

EQUICOMPOSITE
Input: binary number n, with dlog2(n)e bits.
Output: YES, if n is the product of two number with bit size up to dlog2(n)/2e;

NO, otherwise.

To deal with the EQUICOMPOSITE problem using zero-knowledge proofs,
we review the implementation of the multiplication operation using combina-
tional circuits, or, equally, using logical expressions involving the bits of the
operands.

Product of integers as a logical function

It is well-known the product operation of two binary numbers can be described
as a combinational circuit, being each digit of the result a logical function over
the digits of the operands. Indeed, the multiplication operation over binaries
can be obtained by a sequence of additions and multiplications by two.

Adding bits. It is easy to implement a combinational circuit that receives
as input two bits A and B (the operands) and a third bit Ci, the carry (generated
by a adder in the previous stage), and returns as output the bit S resulting of the
sum of the three inputted bits and a new bit of carry Co (Figure 1(a)). Observe
that both bits S and Co can be described as a logical expression applied over the
bits A, B and Ci: S = (A⊕B)⊕Ci and Co = (A ·B)+(Ci ·(A⊕B)). Naturally,
the XOR (“exclusive or”, denoted by ⊕) may be replaced by operations OR (+)
and AND (·), according to the formula A⊕B = ĀB +AB̄.

Chained full adders. To do the sum of binary numbers with more than
one bit, we simply chain full adders, always sending the output carry bit of a
stage to the input of the next stage (Figure 1(b)).

Multiplying by power of two. Multiplying a binary number by two

5

(a) UNI-MULT: fixing the output bits
with a final AND port.

(b) PRE-MULT: fixing the leftmost bits of A as
“1100”.

Figure 2: Converting factorization problems into logical ones.

is basically to perform a “shift left”, i.e., to add a bit zero at the right of the
number that is being multiplied. We denote the left shift of i bits (multiplication
by 2i) of a binary number B by B << i.

Product. Finally, to multiply A = A3A2A1A0 by B = B3B2B1B0, we start
with the rightmost bit of one of the operands, say, A. If the bit A0 is 1, so we
add the value of the other operand, B, to the result C (initially zero); if the bit
A0 is 0, no value is added. For each one of the consecutive bits Ai of A, if and
only if Ai = 1, we do a shift left of size i on B (i.e., we multiply B by 2i) and
we add it to the result. The result, written in a logical expression is equivalent
to C = B ∧A0 + (B << 1) ∧A1 + (B << 2) ∧A2 + (B << 3) ∧A3.

Transforming EQUICOMPOSITE into a logical problem

Once we know how to describe the product of two binary numbers in the form
of a combinational circuit, it is easy to adapt it to a modified circuit that
has a single output bit whose value is 1 if and only if a certain number n is
equicomposite. We need to add NOT ports to each output of the multiplier
circuit related to one bit of n that must be 0, and connect all the outputs to a
single AND port.

Formally, a circuit UNI-MULT(d, n), where d is an integer and n is a binary
number, is built as shown in Figure 2(a), with a multiplier circuit of two binary
numbers of d bits, with a NOT port in each output of the multiplier, related
tone bit 0 of n, and with a AND port connecting all the 2d outputs (inverted or
not). The result is given by the following Theorem 2.1, whose proof is omitted
due to its simplicity.

Theorem 2.1. Circuit UNI-MULT(d, n) returns bit 1 if and only if the binary
number n can be written as a product of two binary numbers up to d bits each.

The PREFACTOR problem

We consider the problem of determining if a number can be written as a product
of two other numbers of equal bitsize, one of which has part of the bits known.

6

Consider the following decision problem, which we denote PREFACTOR.

PREFACTOR
Input: binary numbers n and k.
Output: YES, if n is the product of two number with bit size up to dlog2(n)/2e,
one of which has k as prefix;

NO, otherwise.

We can reduce the PREFACTOR problem to SAT. Build a circuit similar
to the one in Figure 2(a) but “transferring” of some input bits directly to the
last stage of the circuit, which receives an additional AND port as illustrated
in Figure 2(b).

Formally, a circuit PRE-MULT(d, n, k), where d is integer and n and k are
binary numbers, is built as shown in Figure 2(b). Initially, we have a circuit
UNI-MULT(d, n). For each input bit of the circuit UNI-MULT(d, n) related
with a bit of k, we derive it and connect it to a NOT port if such bit is 0 in
k. The derivations are all connected to a AND port, as well the output bit
of the circuit UNI-MULT(d, n). The Theorem 2.2 sums up what the circuit
PRE-MULT allows to do.

Theorem 2.2. The circuit PRE-MULT(d, n, k) returns the bit 1 if and only if
the binary number n may be written as a product of two binary numbers up to
d bits, and one of them having k as its prefix.

Converting to the conjunctive normal form

The reader will observe, again, the output of the circuit PRE-MULT(d, n, k) is a
logical function upon the input bits. However, in order to use the framework of
complexity theory and its polynomial reductions, it is necessary to have a logical
expression in the conjunctive normal form. Fortunately, the transformations of
Tseitin [6] allows to build, from any logical expression σ, a new logical expression
σ′ whose size is linear in the size of σ. Moreover, the transformation is executed
in linear time in the size of σ.

Using zero-knowledge proofs

Knowing how to reduce the problem PREFACTOR to SAT, we can simply recur
to zero-knowledge proofs with polynomial reductions. We can, for example, to
reduce a SAT instance to a 3-COLORING instance in polynomial time [3], so
then to use a classical scheme of zero-knowledge proof for this last problem [2].

3 Almost Fair Exchange of Secrets

3.1 Preliminary results

We start this section by stating the assumptions over which we construct our
method, as well as deriving the basic consequences of such assumptions which

7

will be relevant to us.

A modified factoring assumption

We propose a modified, formally stronger, version of the factoring assumption.
The result is formally stated in Theorem 3.1 and its intuition is that, if a problem
is “hard”, then it remains hard even if “part” of the solution is revealed. We
understand that such result, though being prove with a straightforward method,
has interest by its own, as long as it gives intuition about the “hardness” of
computational problems. We define, in the following, the two versions of the
“Factoring Assumption” which we later prove to be equivalent.

Factoring Assumption. For any positive polynomial r(·) and any proba-
bilistic polynomial time algorithm A the following holds for k sufficiently large

Pr[A(n) = (p, q)] ≤ 1

r(k)
,

where n = pq and p, q are random k-bit primes.
Factoring Assumption With t Revealed Bits. For any positive poly-

nomial r(·) and any probabilistic polynomial time algorithm A′ the following
holds for k sufficiently large

Pr[A′(n, p0, p1, ..., pt−1) = (p, q)] ≤ 1

r(k)
,

where n = pq, p, q are random k-bit primes, and p0, p1, ..., pt−1 are the less
significant bits of p.

Theorem 3.1. For any fixed t, the Factoring Assumption imply the Factoring
Assumption With t Revealed Bits.

Proof. Suppose that the Factoring Assumption With t Revealed Bits does not
hold. Hence there exists a probabilistic polynomial time algorithm A′ such that
Pr[A′(n, p0, p1, ..., pt−1) = (p, q)] ≥ 1

r(k) .

Consider the algorithm described in Algorithm 3.2:

Algorithm 3.2. Factorization
Input: binary number i = i0i1...it−1
Output: Factors (p′, q′) of i or the information that “i is composite”

for i = 0, ..., 2k − 1
let (p′, q′) = A(n, i0, i1, ..., it−1)
if n = p′ · q′ then return (p′, q′)

else return “i is composite”

Note that k is fixed, so that the for loop is iterated a constant number of
times, and the above algorithm is probabilistic polynomial time.

Observe that for precisely one choice of i, the bits of i are the less significant
bits of p, and by hypothesis the algorithm A(n, i0, i1, ..., it−1) finds the factors

8

of n with non-negligible probability. Hence, with non-negligible probability, the
probabilistic polynomial time algorithm A returns the factors of n, and the
Factoring Assumption does not hold (a contradiction).

Building blocks

We define three basic blocks that will be used to build the logic circuit that allow
the transference of information that is related to a “secret”, i.e., the solution
of an NP problem. The framework formalizes and extend the idea of Partial
Knowledge Transfer.

An AND function Ak : {0, 1}k → {0, 1} is such that Ak(x0, x1, ..., xk−1) = 1
if and only if x0 = x1 = ... = xk−1 = 1.

A Product function Pk : {0, 1}2k → {0, 1}2k is a function that receives as
input the binary representation of two k-bits number and outputs the binary
representation of their product.

A Mixing function MB : {0, 1}k → {0, 1}k, where B = Σk−1
i=0Bi is a binary

number on k bitsB0, ..., Bk−1, is a boolean function such thatMB(x0, x1, ..., xk−1) =
(x0 ⊕B0, x1 ⊕B1, ..., xk−1 ⊕Bk−1). Note that MB is a bijective function that
outputs a stream of 1’s precisely in case the input is B.

3.2 The construction

Say Alice knows two k-bit factors p and q of a binary number n. She wants to
prove to Bob that a set of bits x0, ..., xt−1 correspond to the t most significant
bits of q. The Partial Knowledge Transfer concept provide a method to do so.
She proceeds as follows.

1. Construct the boolean function ψ(p0, ..., pk−1, q0, ..., qk−1) :=
A2k+t(Mn(P (p0, ..., pk−1, q0, ..., qk−1)),Mx0,...,xt−1(q0, ..., qt−1)),
on the boolean variables p0, ..., pk−1, q0, ..., qk−1.

2. Convert ψ(p0, ..., pk−1, q0, ..., qk−1) to a boolean function
ψ′(p0, ..., pk−1, q0, ..., qk−1) in conjunctive normal form using Tseitin trans-
formation [6].

3. Prove that ψ′ is satisfiable using a zero-knowledge proof scheme.

Note that the above procedure just formalize the method depicted in Fig-
ure 2(b). Now we formally prove that the method allows Alice to prove Bob
that x0, ..., xt−1 correspond to the less significant bits of a k-bit factor of n.

Theorem 3.3. The scheme described in the present section provides a proof
that x0, ..., xt−1 correspond to the less significant bits of a k-bit factor of n.

Proof. The zero-knowledge proof performed in Step 3 allow Bob to be confident
that ψ is satisfiable, and because ψ and ψ′ are equivalent (by Tseitin transfor-
mation), ψ is satisfiable as well. By the construction of ψ, we know that the
output bits of Mn(P (p0, ..., pk−1, q0, ..., qk−1)) are all 1 (because these bits are

9

input of an AND Function), hence the output bits of P (p0, ..., pk−1, q0, ..., qk−1)
are the binary representation of n. Therefore, the p0, ..., pk−1 and q0, ..., qk−1
are the binary representations of two numbers whose multiplication results in
n, i.e., they represent factors of n. By the construction of ψ, we also know that
the output bits of Mx0,...,xt−1

(q0, ..., qt−1) are all 1 (once again, because these
bits are input of an AND Function), hence q0 = x0, q1 = x1,..., qt−1 = xt−1,
i.e., the less significant bits of factor q of n are precisely x0, ..., xt−1.

Extending to SAT problem

Now we extend the above scheme to allow the encoding of the solution of a SAT
problem as a set of bits in a factor of a number. The idea is that, in order to
reveal the solution of the SAT problem, one has to factor a large number (or
to solve the SAT problem itself). The goal is that the parties use the scheme
described in the previous section to gradually reveal the bits of one of the factors
of a large number, and when this factor is completely revealed, then the other
factor will reveal the solution of the SAT problem.

The idea is simple: just extend the scheme described in the previous section
by creating an extra function that is the SAT formula, and make the output
of the SAT formula φ to be input of the final “AND gate” of the formula (so
that the SAT formula must be satisfiable). In order to rely on the Factoring
Assumption, the solution of the SAT problem — which is not random — cannot
appear directly as part of one of the factors. This is solved by passing the bits
of the solution of the SAT problem into a random mixing function.

The precise construction is the following.

1. Chose random bits r0, ..., rs−1 and reveal them

2. Construct the boolean function ψ(x0, ...xs−1, ps, ..., pk−1, q0, ..., qk−1) :=
A2k+t+1(φ(p0, ..., ps−1),Mn(P (Mr0,...,rs−1

(x0, ..., xs−1), ps, ..., pk−1, q0, ..., qk−1)),
My0,...,yt−1

(q0, ..., qt−1)) on the boolean variables x0, ...xs−1, ps, ..., pk−1, q0, ..., qk−1.

3. Convert ψ(p0, ..., pk−1, q0, ..., qk−1) to a boolean function ψ′(p0, ..., pk−1, q0, ..., qk−1)
in conjunctive normal form using Tseitin transformation [6].

4. Prove that ψ′ is satisfiable using a zero-knowledge proof scheme.

Note that factoring n allows to recover the solution of the SAT problem,
namely Mn(P (Mr0,...,rs−1

(p0, ..., ps−1).
Formally we denote by Deliver(φ, n, r0, ..., rs−1, q0, ..., qt) the execution of

the above protocol1.

Theorem 3.4. The scheme described in the present section, Deliver(φ, n, r0, ..., rs−1, q0, ..., qt),
provides a proof that y0, ..., yt−1 correspond to the most significant bits of a k-bit
factor q of n and that the most significant bits p0, ..., ps−1 of p = n/q are such
that φ(Mr0,...,rs−1

(p0, ..., ps−1)) = 1.
1Note that Step 4 does not specify the acceptable soundness error, i.e., the agreed maximum

value on the probability of a proof of a false statement. This is not needed, as long as this
can be defined in an a priori agreement between the parties.

10

Proof. The zero-knowledge proof performed in Step 3 allow Bob to be confident
that ψ is satisfiable, and because ψ and ψ′ are equivalent (by Tseitin transfor-
mation), ψ is satisfiable as well. By the construction of ψ, we know that the
output bits of Mn(P (p0, ..., pk−1, q0, ..., qk−1)) are all 1, hence the output bits
of P (p0, ..., pk−1, q0, ..., qk−1) are the binary representation of n. Therefore, the
p0, ..., pk−1 and q0, ..., qk−1 are the binary representations of two numbers whose
multiplication results in n, i.e., they represent factors of n. By the construc-
tion of ψ, we also know that the output bits of My0,...,yt−1

(q0, ..., qt−1) are all 1,
hence q0 = y0, q1 = y1,..., qt−1 = yt−1, i.e., the most significant bits of factor q
of n are precisely y0, ..., yt−1. By the construction of ψ, we also know that the
output bit of φ(p0, ..., ps−1) is 1, hence phi has a satisfying solution whose truth
values x0, ..., xs−1 are such that x0 ⊕ r0, x1 ⊕ r1,..., xs−1 ⊕ rs−1 are the most
significant bits of factor p of n.

3.3 The complete protocol

The protocol described in the previous section allows one to deliver a set of the
bits of one of the factors q of a number n at the same time (s)he proves that
p = n/q contains the solution of a SAT problem. We propose to use such scheme
as a subprotocol that allows to gradually exchange secrets between two parties.

Say Alice knows the solution xA0 , ..., x
A
s−1 of a SAT formula φA on s variables,

while Bob knows the solution xB0 , ..., x
B
s−1 of a SAT formula φB also on s vari-

ables, and they want to exchange their solutions by gradually and alternately
revealing the bits of the solutions.

Initialization:

1. Alice and Bob agree on the size 2k of the number n to be factored

2. Alice select s random bits rA0 , ..., r
A
s−1 that will “mask” her solution of the

SAT formula (so that her prime factors are truly random) and informs
these bits to Bob.

3. Alice defines pAi := rA0 ⊕ xAi for i = 0, ..., s− 1

4. Alice choses 2k−s random bits pAs , ..., p
A
k−1, q

A
0 , ..., q

A
k−1 in such a way that

pA := Σk−1
i=0 p

A
i and qA := Σk−1

i=0 q
A
i are prime numbers and keep these bits

secret.

5. Alice computes nA := pAqA, informing nA to Bob.

6. Bob select s random bits rB0 , ..., r
B
s−1 that will “mask” his solution of the

SAT formula (so that his prime factors are truly random) and informs
these bits to Alice.

7. Bob defines pBi := rB0 ⊕ xBi for i = 0, ..., s− 1

11

8. Bob choses 2k− s random bits pBs , ..., p
B
k−1, q

B
0 , ..., q

B
k−1 in such a way that

pB := Σk−1
i=0 p

B
i and qB := Σk−1

i=0 q
B
i are prime numbers and keep these bits

secret.

9. Bob computes nB := pBqB , informing nB to Alice.

10. Bob and Alice agree about the number of rounds (or acceptable soundness
error) in the execution of the zero-knowledge proof.

We can now describe the execution of the main protocol.

Protocol Fair Exchange of Secrets

for i = 1, ..., k

Execute Deliver(φA, n, r
A
0 , ..., r

A
s−1, q

A
0 , ..., q

A
i) so that Alice deliver to

Bob the i more significant bits of her prime factor qA.

Execute Deliver(φB , n, r
B
0 , ..., r

B
s−1, q

B
0 , ..., q

B
i) so that Bob deliver to

Alice the i more significant bits of his prime factor qB .

4 Final Considerations

In the present work, we addressed the problem of developing fair protocols to
the exchange of secrets. Recall that, where only to parties are involved in such
a protocol, then there is no hope to have a fair protocol, because simultaneity
cannot be achieved in such a configuration. Hence, we focus on the approach
of “partial delivery” of secrets, i.e., the parties gradually show their secrets —
i.e., bit-by-bit, always with a proof that the delivered bit is indeed part os the
secret.

Our approach can be applied to any secret that is the solution of an NP-
problem, and its security rely on the Factoring Assumption. The key observation
that supports our scheme is the fact that Factoring is hard even if some bits of
a factor is revealed.

Other important aspect of our scheme, that can not be overemphasized, is
the fact that the bits of the “real secret” are never revealed. Recall that n = pq
is such that the secret is “encoded” in p, but only bits of q are transferred. The
real secret is only revealed when n is factored and p is obtained. This approach
is fundamental because is allows us to rely on the Factoring Assumption With
T Revealed Bits — note that an analogous assumption does not hold for any
NP problem.

We recall, also, that the bit-by-bit exchange of a secret presents a problem
that was already registered in the literature. It is the fact that the parties
can stop the protocol at any moment and try to factor n by themselves. This
can put the party with less computational power in disadvantage (the more
powerful party could stop the protocol in a moment where this powerful party
can factor n in feasible time but the less powerful party can not). Anyway, in
the current times of cloud computing where computational power has a price,

12

it is not unreasonable to assume that both parties have virtually the same
computational power.

Future work. In future work, we will investigate whether such Partial
Knowledge Transfer schemes can be used in adjudicated protocols, in order to
achieve fairness with a third party that only interferes in case of misbehavior of
the participants.

Acknowledgements

Partially supported by CNPq and Faperj.

References

[1] M. Blum. How to exchange (secret) keys.. ACM Transactions on Computer
Systems 2 (1983) 175–193.

[2] S. Goldwasser, S. Micali and C. Rackoff. Knowledge Complexity of Interac-
tive Proofs. Proc. 17th STOC (1985) 439–448.

[3] R. Karp. Reducibility among combinatorial problems. In R. E. Miller and J.
W. Thatcher (editors). Complexity of Computer Computations. New York:
Plenum Press (1972) pp. 85103.

[4] J. Kilian. Uses of randomness in algorithms and protocols. MIT Press 1990,
ISBN 978-0-262-11153-9, pp. 1-235

[5] R. Machado, D. Boccardo, V. de Sá, J. Szwarcfiter. Fair fingerprinting pro-
tocol for attesting software misuses. Proc. 10th International Conference on
Availability, Reliability and Security (ARES 2015).

[6] G. S. Tseitin. On the complexity of derivation in propositional calculus.
Leningrad Seminar on Mathematical Logic (1966).

13

