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We investigate the performance of entropy estimation methods, based either on block entropies or compression
approaches, in the case of bidimensional sequences. We introduce a validation data set made of images produced
by a large number of different natural systems, in the vast majority characterized by long-range correlations,
which produce a large spectrum of entropies. Results show that the framework based on lossless compressors
applied to the one-dimensional projection of the considered data set leads to poor estimates. This is because
higher dimensional correlations are lost in the projection operation. The adoption of compression methods which
do not introduce dimensionality reduction improves the performance of this approach. By far, the best estimation
of the asymptotic entropy is generated by the faster convergence of the traditional block-entropies method. As a
by-product of our analysis, we show how a specific compressor method can be used as a potentially interesting
technique for automatic detection of symmetries in textures and images.
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I. INTRODUCTION

Entropy estimation in bidimensional (2D) systems is a
problematic task. There is a rich literature studying one-
dimensional (1D) systems but the analyses of 2D patterns are
scarce, and they are expected to present new features com-
pared to the 1D case. The few works that can be traced [1–3],
written after the 2000s, use techniques based on the block-
entropies method, inspired by classical theoretical works
developed for describing 2D Ising models (i.e., in Refs. [4,5]).
More recently, a new line of research has brought to the fore
this problem by rediscovering a well-known method based
on the use of lossless compression algorithms [6,7]. These
works have had the merit of showing how this elegant and
computationally efficient technique is a natural candidate for
estimating the entropy of various 2D systems, including phys-
ical ones. In particular, they opened the door to estimates
based on empirical configurations, and therefore, in essence,
images, which are a very common result of experimental
observations. Unfortunately, such studies seem to have over-
looked some aspects of the existing literature on the use
of compressors for entropy estimation. In general, the use
of these algorithms is known to present slow entropy con-
vergence [8,9] and alternative, more efficient methods, are
traditionally used, at least for the 1D case [10]. Furthermore,
the existing theoretical results which guarantee the conver-
gence of these methods to the expected entropy value refer
to specific compressors, called asymptotically optimal algo-
rithms, operating on 1D strings [11]. Such results cannot be
naively generalized to the 2D case. In contrast, in the approach
applied to the 2D cases in Refs. [6,7], the sequences were
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trivially projected to 1D and then the compressors were
applied. This projection operation has two important conse-
quences.

First, even if the used compression algorithm for the 1D
sequence is optimal, it does not imply that the whole approach
performs as an asymptotically optimal algorithm, as the pro-
jection to lower dimensionality is part of the compression
routine and not just a detail. For this reason, the reliability
of the method became just heuristic and must be assessed on
the basis of empirical tests.

Second, this operation, mapping multidimensional patterns
to a 1D sequence loses bidimensional correlations, can be
path-dependent and even produce spurious long-range cor-
relations [1,12]. The use of a locality-preserving curve, like
Hilbert’s curve, does not guarantee to solve these difficulties.
The block-entropies method seems a better candidate to over-
come these problems. In fact, it is naturally generalizable to
patterns of higher dimensions [1,13] and the practical imple-
mentation of 2D scanning paths has been successfully tested
[1,14].

Taking into account these considerations, the aim of this
work is to test and compare the accuracy of the two afore-
mentioned methods. We will do it by testing the convergence
of the two methods to the asymptotic entropy of different
2D sequences. Particular attention must be paid to the choice
of the data to be analyzed. As samples for which entropy
estimation is harder are better candidates for the test, we select
systems with long-range correlations. Traditionally, the 2D
Ising model with nearest neighbor interactions has been con-
sidered because of its properties near the critical transition and
its analytical solution. Unfortunately, this model is a special
case that can be reduced to a 1D string for capturing all the
statistics that determine its equilibrium properties for entropy
estimation, as demonstrated in Refs. [1,4,15]. For this reason,
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surely, it is not a good benchmark for entropy estimation in 2D
systems. Tests of 1D entropy estimation methods have been
traditionally carried on using natural systems, such as written
texts and biological sequences. Following those approaches,
in our work we select a large amount of different long-range-
correlation natural systems presenting a broad spectrum of
entropy values.

In the following, we will discuss in details the properties
of this data set (Sec. II) and the two considered approaches
(Sec. III), and we present (Sec. IV) and discuss (Sec. V) the
results of our analysis.

II. DATA

Our pool of data is composed of two data sets generated by
natural systems. Such systems are characterized by presenting
a spontaneous superposition of regularities, structures, and
noises. Real correlations and noises are much more involved
than synthetic and model-generated ones. In fact, noise can
show intricate variance and correlations depending on posi-
tion and signal. The selected data generally present long-range
correlations. As this property makes the estimation of entropy
a particular difficult task, we can consider this pool of data a
suitable benchmark for realizing our test.

Our first sample is composed of 68 built-form maps rep-
resenting urban sections of cities around the world [14]. A
recent analysis has shown that in these systems entropy con-
vergence is similar to the one found in written texts and
sonatas, characterized by a slow convergence toward the
asymptotic entropy values. In fact, the subextensive part of
their block entropies diverges [14,16], implying the presence
of subtle, involved correlations at different scales which sup-
port entangled long-range structures.

These maps are generated by reducing the urban form to
two-dimensional arrangements based on building footprints,
which represent the distinctions between built and unbuilt
areas. Within the considered cities, we focus on small-scale
areas with dense urban form and the selection of sections was
based on the identification of regions with a high spatial con-
tinuity in the fabric of built form.

The sample was prepared by extracting the data from the
public map repository Google Maps and selecting geographic
areas of 9 Km2. Images underwent a resizing process and
were converted to a black-and-white image and finally into
a matrix of size 1000×1000 with binary values (1 for built
cells, 0 for unbuilt one). This matrix corresponds to a sequence
of 106 cells, a size which assures a trade-off between typical
empirical measurable systems and sufficient statistics for lim-
iting finite-size effects in the process of entropy estimation.
Figure 1 shows some paradigmatic maps.

Our second data set is composed of Brodatz’s textures.
These images are the most commonly used by the signal
processing and computer vision communities, for valida-
tion of techniques of texture segmentation, classification, and
image retrieval. This second data set presents images gener-
ally characterized by long-range correlations, but short-range
correlations are also present. Moreover, we can find more
uniform or quasiperiodic textures which are useful for testing
the estimators for entropy values closer to zero.

FIG. 1. Top: Some exemplar maps of urban sections in down-
town areas. Bottom: The binary version of five different Brodatz
textures.

The standard Brodatz’s texture album [17] is composed
of 112 grayscale images representing a reach ensemble of
various natural textures, which range from simple periodic
structures to more random shapes or even relevant noise. Im-
ages were photographed under controlled lighting conditions
and present a very high quality. As they are not computa-
tionally generated, they display natural noises that make them
better for testing than artificial pictures. We downloaded 8-bit
grayscale images [18] and we reduced them to binary values,
by using a 50% threshold to determine whether the resulting
pixel would be black or white. Finally, we rescaled them
to matrices of size 1000×1000. Figure 3 shows the binary
version of some of the Brodatz’s textures.

III. METHODS

We estimate Shannon’s entropy using two methods origi-
nally introduced for 1D systems.

The first method is based on the concept of block entropy.
For 1D sequences, the method consists of defining the block
entropy of order n through

Hn = −
∑

k

pn(k) log2[pn(k)], (1)

where blocks are segments of size n of the considered se-
quence, and the sum runs over all the k possible n blocks.
Equation (1) corresponds to Shannon’s entropy [19] of the
probability distribution pn(k). Shannon’s entropy of the con-
sidered system (the whole sequence), which we indicate with
h, can be obtained by taking the limit for the blocks that goes
to infinity [10,20]. This can be done in two ways. The first one
is the limit

h = lim
n→∞ Hn/n, (2)

which measures the average amount of randomness per sym-
bol that persists after all correlations and constraints are taken
into account. The above limit exists for all spatial-translation
invariant systems, as demonstrated in Ref. [21]. Alternatively,
the Shannon entropy can be evaluated as the limit of the
differential entropies hn = Hn − Hn−1:

h = lim
n→∞ hn (3)

(note that for definition H0 = 0). This is the limit of a form
of conditional entropy, as hn is the entropy of a single symbol
conditioned on a block of n − 1 adjacent symbols [1]. The two
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limits [Eqs. (2) and (3)] are equivalent. More details can be
found in Refs. [1,10,20]. These approaches can be generalized
to sequences of symbols in 2D by defining the n-blocks for a
2D sequence [1,14].

The advantage of using the first limit [Eq. (2)] is that the
set of Hn/n values is monotonous and concave and, in general,
displays a clear regularity. For this reason, when an appropri-
ate function for fitting the set of Hn/n points can be found, the
limit can be empirically obtained, estimating its asymptote.
Unfortunately, the form of the convergence of the Hn/n is
not universal. It depends on the behavior of the correlations
present in the analyzed system and it is not possible to define
an universal unsatz.

In contrast, generally, the second approach of Eq. (3) is
more influenced by statistical errors, which do not suggest
the use of a fitting function for extrapolating the limiting
value of h, but it presents a really faster convergence [10].
As we are going to estimate entropy for a varied pool of data,
which displays very different systems with distinct correlation
structures, we will use this second approach, which takes
the limit of the differences. The definition of the n blocks
for bidimensional sequences will use the 2D blocks defined
by Feldman et al. in Ref. [1], which are inspired by classi-
cal analysis of spin systems. This block-entropies estimation
method has already been applied in previous works, where the
robustness and reliability of the method has been shown also
for bidimensional systems [1–3,14,16,22].

The aforementioned Shannon’s approaches for entropy es-
timation are based on probabilistic concepts referring to the
source that emits the set of all possible sequences. In contrast,
it is possible to estimate the entropy on the basis of ideas
defined for a single finite sequence.

The basic concept is the algorithmic (or Kolmogorov)
complexity (AC) which measures the complexity of an in-
dividual object by the size of the smallest program that
can reproduce it. In fact, the AC of a sequence x, which
we will indicate with C(x), is the length of the short-
est program which generates as output the sequence and
stops afterward [23,24]. For any probability distribution P(x)
that is computable using a Turing machine (a very gen-
eral condition), the expected value of AC equals Shannon’s
entropy, up to a constant term [25]. From this result, it
follows that Shannon’s entropy is asymptotically equal to
the expected complexity:

∑
x P(x)C(x) ∼ −∑

x P(x)logP(x)
[25].

Unfortunately, the application of this powerful concept for
the estimation of h is limited by the fact that AC is a noncom-
putable quantity. Even if the minimal theoretical program that
generates the sequence is not achievable, there are compres-
sion algorithms which can overapproximate it. Among them,
asymptotically optimal algorithms are the ones for which the
ratio of the length of the compressed and uncompressed files
tends to h when the length of the sequence tends to infinity.
For sequences emitted by finite-alphabet stationary ergodic
sources, a famous optimal algorithm for 1D sequences is the
Lempel-Ziv algorithm (LZ77) [26]. The convergence to h is
slow, with corrections behaving like O( loglog(N )

log(N ) ) [11].
An interesting implementation of these ideas was recently

introduced by Avinery et al. in [6], in a framework that can

be naturally extended also to sequences of continuous values
and bidimensional data. In such heuristic approach, entropy is
evaluated following this scheme:

1) discretize the considered configurations
2) store them in a 1D file
3) measure the compressed file size with a lossless com-

pression algorithm (Cd )
4) estimate the incompressibility η by η = (Cd − C0)/

(C1 − C0), where C0 is a compressed degenerate data sets and
C1 is a compressed random data set

5) map η to the asymptotic entropy h: h = ηhmax

Here we use this scheme for binary variables. Note that,
even if the used compression algorithm for the 1D sequence
is optimal, it does not guarantee that the framework works
as an asymptotically optimal algorithm. In fact, before apply-
ing the compressor, the algorithm reduces the bidimensional
sequence to a 1D one. For this reason, in this work we will
test the implementation of this framework for general loss-
less compression algorithms, not just LZ77, considering also
methods which operates directly on 2D systems, without pre-
viously reducing the system to a 1D sequence. To sum up, for
our study, the algorithm reduces to measure the compressed
file size with a lossless compression algorithm and estimate
the incompressibility η, which corresponds to the asymptotic
entropy h.

We will consider six lossless compression algorithms, all
implemented using PYTHON libraries. A first group of algo-
rithms are based on the classical LZ77 algorithm [26], which
compresses one-dimensional strings, detecting repeated sub-
strings and replacing them with pointers to a dictionary.
Among state-of-the-art compressors using the LZ methods,
one is GZIP [27]. As it is not constructed for image compres-
sion, the images were first linearized using Hilbert’s curves,
which preserve locality and are suggested to produce the best
performance in 2D [28], and then compressed. The second al-
gorithm, PNG [29], uses a compression method similar to GZIP,
but already adapted for images. For each line, it applies a filter
that turns colors into color differences, and then compresses
that line using a combination of LZ77 and Huffman coding.
GIF [30] is a popular format that allows animations, and its
compression is lossless as long as the original image has only
8 bits of color. Images are compressed using the Lempel-
Ziv-Welch algorithm [31], an improved implementation of the
LZ78 algorithm [32]. WEBP [30] is by default a lossy format,
but it can be used in a lossless mode. It works by applying a
series of reversible filters to the image that make it more com-
pressible, and then replacing each repeated horizontal pixel
sequence with a reference to where it previously appeared,
implementing a variation of the LZ77 method.

The last two compressors, JPEG-2000 [30] and JPEG-LS

[30], are not based on LZ algorithms and are variations of
JPEG, a popular lossy compressor. JPEG-2000 is used in loss-
less compression mode. It splits the image into so-called
tiles which are wavelet transformed and finally encoded. The
algorithm used by JPEG-LS is LOCO-I [33], a dynamic com-
pression algorithm that uses statistical inferences to realize a
lossless compression. The algorithm consists of three parts,
performed for each pixel. First, a prediction is done, then the
context is determined, and finally the coding is completed.
The first step, the prediction, is done by trying to estimate
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what would be the target pixel value based on three neighbors
positioned around it. From the estimate, the forecast error
is calculated and then corrected, making use of the context
values. Finally, the error is compressed using the Golomb-
Rice coding. The scan format of this method has some
analogies with the format used in the entropy estimation via
differential entropy.

In the case of GZIP, the matrix format is passed to the
compressor after linearization. In the cases of PNG, GIF, WEBP,
JPEG-2000, and JPEG-LS, the matrix is transformed into a
bitmap (it just implies the color black pixel to be numbered 0
and the white 255, instead of 1) and subsequently compressed.

More details describing the block-entropies and the com-
pression methods used in our analysis can be found in
Appendices A and B.

IV. RESULTS

We systematically compare the entropy estimated by using
the block-entropies method of Eq. (3) with the ones measured
with the compression method for different lossless compres-
sion algorithms (hc.a.). For the block-entropies method, we
consider the results obtained for blocks up to order 15 (h15).
This value assures that we avoid relevant finite-size effects, as
proven by the fact that for a perfectly random binary matrix
the method, at this order, underestimates the entropy at about
2%.

Comparison between the two methods is depicted in Fig. 2
for the data of urban sections and in Fig. 3 for Brodatz’s set
of textures. Figures represent the scattering plot of the pairs
(h15, hc.a.), where c.a. is the name of the applied compres-
sor algorithm. It is evident that, in general, the compression
method dramatically overestimates the entropy. The only ex-
ception is the JPEG-LS algorithm, which presents a closer
estimation of the entropy to the values of h15. These results
are characterized using a linear fit of the scattering plot and
evaluating the percentage difference:

r = hc.a. − h15

h15
. (4)

In general, linear fittings show that the difference between
hc.a. and h15 grows for larger h15 values. Considering the two
data sets, the median of the percentage difference r is between
75% and 135% for all the considered compressors, except the
JPEG-LS which presents a median of 36% and a very weak de-
pendence of the difference between hc.a. and h15 on the entropy
value. Details about this analysis can be found in Table I, both
for the urban sections data and Brodatz’s textures.

In the following, we focus our analysis to the two most
representative methods of compression: the LZ77 algorithm
implemented by GZIP with Hilbert’s curve and the JPEG-LS

algorithm, the first because it has been used and explored
most frequently and the second because it displays, by far,
the best performance among the considered compressors. In
Fig. 4, we plot the median of r (r̃) as a function of the
order i of the considered block-entropies method for these two
compression methods. The GZIP performance is comparable to
the order-1 block-entropies method and the JPEG-LS algorithm
approximates the results of the order-3 block entropies. Up to

FIG. 2. Scattering plot of the entropies of the urban sec-
tions evaluated using the lossless compression algorithms vs the
block-entropies algorithm. Each figure represents the entropy pairs
obtained using a different compressor. Continuous lines represent the
linear fitting of the points. In the inset, the histogram of the relative
differences [Eq. (4)] between the two considered methods.

order 4, there is an abrupt improvement in the performance of
the block-entropies method. Then, a linear growth follows.

TABLE I. Results of the analysis of the difference in the entropy
estimation between the block-entropies and the compression method.
r̄ is the mean value of the measured r and r̃ is the median. The first
half of the table contains the results obtained from the urban sections;
a is the slope and b is the y intercept of the linear regressions of Fig. 2.
The second half shows the results obtained from Brodatz’s textures;
a and b results are from the linear regressions of Fig. 3.

Compressor r̄ r̃ a b

GZIP 0.98 0.91 1.25 0.15
PNG 1.08 1.03 1.41 0.14
WEBP 0.80 0.75 1.37 0.09
GIF 1.12 1.05 1.09 0.21
JPEG 2000 1.12 1.07 1.26 0.18
JPEG-LS 0.42 0.36 0.88 0.11
GZIP 1.17 1.05 1.63 0.06
PNG 1.30 1.19 1.73 0.06
WEBP 0.93 0.83 1.46 0.05
GIF 1.29 1.15 1.68 0.07
JPEG 2000 1.46 1.35 1.71 0.08
JPEG-LS 0.48 0.36 1.17 0.03
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FIG. 3. Scattering plot of the entropy of the Brodatz textures
evaluated using the compression algorithms vs the block-entropies
algorithm. Continuous lines represent the linear fitting of the points.
In the inset, the histogram of the relative differences.

Figure 5 shows the comparison of the methods using
the full pool of data, consisting of the urban sections and
Brodatz’s textures. It outlines how the different approaches
perform over all the considered spectrum of entropies. For
construction, all methods give exactly 0 for a perfectly

FIG. 4. r̃ values displayed in dependence of the order of the
block-entropies method used in the comparison with the compression
method implemented by using the GZIP (red points) and JPEG-LS al-
gorithms (black points) for the urban sections (circles) and Brodatz’s
textures (squares).

FIG. 5. Scattering plot of the entropies evaluated using the com-
pression algorithm vs the block-entropies algorithm. Red points
represent data of Brodatz’s textures, and black points show those
of the urban sections. The blue point is the result of a perfectly
random image. In the inset is the histogram of the relative differ-
ences between the two considered methods. The dashed line is the
x = y equation. Top: The GZIP compression algorithm is used. The
continuous line is a guide for the eyes (generated by a fourth order
polynomial fitting). Bottom: Results for the JPEG-LS compression
algorithm.

uniform image. The compression framework gives 1 for a per-
fectly random set (for construction), and the block-entropies
approach gives practically 1 for all hi with i � 15. For this
reason, the scattering plot shows a natural convergence toward
these values and, consequently, an equivalence between the
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FIG. 6. Top: On the left, the relative difference between the entropy estimated from the original and rotated Brodatz’s textures using the
JPEG-LS compressor method. The textures with |rR| > 0.2 are indicated with their symbols. In the inset, the same data encompassing also the
extreme statistics. On the right, eight textures presenting large differences. Bottom: Distribution of the rR values for the JPEG-LS compressor
(on the left) and the block entropy method (on the right). The first distribution presents a standard deviation of 0.646 and the second one of
only 0.028.

two methods at the extremes of the spectrum. In contrast, for
intermediate values the comparison shows a clear increase in
the overestimation of the entropy for the compression meth-
ods. This fact is particularly evident for the GZIP algorithm
implementation. These entropy values correspond to all the
data from urban sections, which practically always present
long-range correlations. In this range of entropy values, the
two data sets practically fully overlap.

By looking at the results of the JPEG-LS compressor, we
can note that the dependence of the comparison on h is weaker
and, in general, points are closer to the x = y line. On the other
hand, the pairs show a pronounced spreading. Focusing on
the points which present an important overestimation of the
entropy measured with the compression method, we note that
they correspond to textures characterized by some symmetries
along a specific axis.

We explore this behavior produced by the JPEG-LS method
by estimating the entropy for the original Brodatz textures
(hO) and for the same ones after a 90 ◦ rotation (hR). The
relative difference of these measures, defined as rR = hO−hR

hO ,
is shown in Fig. 6. Note that all the images which present a
high |rR| value display line segments, stripes, or structures

predominantly oriented in horizontal or vertical directions.
That is expected, since JPEG-LS performs line-by-line sweeps
using predictor blocks which are three pixels wide and two
pixels tall; hence the existence of vertical or horizontal pat-
terns will benefit the compression of one of the rotated images
in a more pronounced fashion, whereas images without those
axis-aligned patterns tend to be more uniformly processed
by JPEG-LS, irrespective of rotation. In contrast, if the block-
entropies method is used, the rR is systematically very small
and can be ascribed to noise effects. This independence of
the block entropy method from rotations has been previously
verified in Ref. [14], using random scanning paths.

V. DISCUSSION

The comparison of the block-entropies method with the
framework based on lossless compressors shows that this
second approach, independently of the considered compressor
algorithm, always overestimates substantially the entropy. The
algorithms GZIP, PNG, WEBP, and GIF present similar results,
with the median of the percentage differences enclosed in
the interval [0.75,1.19]. This means that the overestimation
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of the entropy for these approaches, in relation to the block-
entropies method of order 15, is around 100%. The analysis
of the dependence of this difference on the order of the block-
entropies method shows that blocks with a size of only four
elements are sufficient for obtaining evident better estimations
than the compression algorithms, which seem able to grasp
correlations only up to the first neighbors cells (see Fig. 4).
The algorithms GZIP, PNG, WEBP, and GIF are based on the idea
of projecting the 2D sequences onto a lower dimensionality
and then processing these strings using the LZ scheme, gen-
erally implemented by the Deflate algorithm. It seems that
the specific details introduced by each compressor, either in
preprocessing the images or in coding, often optimized for
colored or gray sequences, do not have a relevant impact on
the final results, at least for binary sequences.

We conjecture that the principal obstacle for reaching
better estimations is the 1D projection of the sequences.
The reduction of 2D patterns onto a 1D string significantly
destroys involved bidimensional structures, which are par-
ticularly significant in systems with long-range correlations,
and generates a substantial overestimation of the entropy. A
hint in this direction comes from the use of a conceptually
different compressor, the JPEG-LS, which is based on infer-
ence and uses bidimensional paths. This algorithm strongly
reduces the overestimation producing a percentage difference
of 36%. This fact shows that the framework introduced in
Ref. [6] is dependent on the type of the implemented com-
pression scheme, where not only the compression algorithm
but also the eventual use of a projection procedure is relevant.
Moreover, it shows that the use of algorithms specifically
designed for bidimensional systems can substantially improve
the performance of the approach. If, on one hand, the under-
estimation is still important and the results surely cannot be
considered accurate for general 2D systems; on the other, this
approach can be interesting for specific situations. For exam-
ple, when we are interested in rough and fast estimations or in
relative entropy values and when the sequences are not binary.
In this last situation, the block-entropies method becomes
ineffective, as for estimating the probabilities of countless
block configurations a huge statistic should be necessary.

Our analysis produced other interesting results. By con-
sidering a large pool of 180 images with very different
characteristics, we can describe how the different approaches
perform over a larger spectrum of entropies. Figure 5 shows
the expected correct convergence toward 0 and 1 at the
extremes of the spectrum. In contrast, for intermediate val-
ues, the comparison clearly shows the overestimation of the
entropy for the compression method. These results well rep-
resent the dependence of the quality of the estimates on the
specific entropy values [20], outlining another well-known
aspect which makes entropy estimation difficult. Finally, the
dependence of the performance of the compression method
implemented with JPEG-LS on the presence of axial symme-
tries makes this method a potentially interesting algorithm
for automatic symmetries detection in textures and images. In
fact, if a particular rotation exists which produces an evident
lower value in the detected entropy, the horizontal direction
of this rotated image corresponds to the axis where patches
(stripes, segment, or other patterns) are predominantly ori-
ented.

To sum up, we tested the convergence properties of two
methods of entropy estimation for 2D binary sequences with
a fixed typical size. We showed that frameworks based on
lossless compression methods applied to data projected onto a
one-dimensional string lead to poor estimates. This is because
higher dimensional correlations are obscured by the projec-
tion operation. The adoption of compression methods which
do not realize the dimensionality reduction (i.e., JPEG-LS) can
improve the performance of this approach. Traditional block-
entropies methods generalized to 2D systems show a really
faster convergence and clearly better results in estimating the
asymptotic entropy.

VI. CONCLUSION

The literature studying entropy estimation in bidimen-
sional systems is very sparse, and some aspects of the applied
methods have generated controversy. Recent works suggest
that lossless compression algorithms can be used as an ef-
ficient and accurate approach to solve this task universally,
proposing that 2D sequences may be systematically linearized
by appropriate procedures [6,7] and leading to the belief that
such an approach can perform at least as well as the block-
entropies method does [7].

Recently, it has been shown that traditional block-entropies
methods are flexible and robust enough to be applied on gen-
eral 2D systems [14]. Here, our analysis demonstrated that
the use of this approach allows for more precise estimation of
the asymptotic entropy than do frameworks based on lossless
compression methods, which cannot be considered accurate
for 2D long-ranged correlated systems. Moreover, in contrast
to suggestions of previous works, an important dependence on
the algorithms used by the compression methods is outlined.
Although general-purpose and algorithms designed explicitly
for compressing images can produce similar results, the JPEG-
LS specific code outperforms these algorithms. Some of these
results may not seem surprising, yet they are presented here
in part to fill a gap in the literature and in part because they
may lead to further insight into how entropy estimation of an
individual image can be ultimately performed.

The potential applications of these results are very wide.
Entropy and free-energy calculations are fundamental for the
thermodynamic analysis of general 2D many-body systems
at equilibrium. Furthermore, these techniques can be useful
for the characterization of order and correlations in out-of-
equilibrium systems and in other areas of statistical physics
and dynamical systems.

Shannon’s entropy is the cardinal quantity for developing
information-based measures, with a direct interpretation in
terms of disorder and a rigorous one in term of surprise. It is
a global unparameterized quantity, more sensitive and general
than traditional two-point measures, such as standard corre-
lations. For these reasons, it can be used for characterization,
diagnosis, modeling, and classification of images and general
spatial systems (e.g., medical and biological images, surfaces,
turbulence, geographical systems, and landscape patterns).
For example, the estimated entropy of the adopted data set
of urban sections has been already used for classifying these
systems in Refs. [14,16]. Similar ideas could be applied for
image characterization of Brodatz’s textures.
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FIG. 7. This figure represents the block of size 15 for estimating
H15. X is the target cell and numbers indicate the scan order for
general blocks up to order 15. These blocks have been clearly defined
and described by Feldman et al. in Ref. [1].
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APPENDIX A: BLOCK-ENTROPIES METHOD

We estimated Shannon’s entropy as the limit of the differ-
ential entropies hn = Hn − Hn−1. This difference measures the
randomness generated by adding the target cell (denoted by X
in Fig. 7) to the block, given that we have already observed the
cells in Hn−1. We approximated this limit with the maximum
order which can avoid relevant finite-size effects; for this
reason we calculate hn up to order 15 (h15). To do this, we
must estimate H15 and H14.

H15 is obtained using the equation

H15 = −
∑

k

p15(k) log2[p15(k)]. (A1)

We partitioned our matrix of N×N cells with S blocks
of size 15, following the block geometry shown in Fig. 7.
All the k possible different block configurations are taken
into account and the number of times each configuration k is

found in the matrix (Yk) is counted. The probability p15(k)
is approximated by Yk/S. By using these probabilities, the
15-block entropy value H15 is calculated using Eq. (A1). The
value of H14 is obtained analogously. In this case, the block of
Fig. 7 is considered without the target cell X .

APPENDIX B: LOSSLESS COMPRESSION METHOD

This method measures the compressed file size after the
application of a lossless compression algorithm (Cd ) and es-
timates the incompressibility η, which corresponds to the
asymptotic entropy h.

η = (Cd − C0)/(C1 − C0), where C0 is a compressed de-
generate data sets and C1 a compressed random data set.

1. General purpose compressor (GZIP)

The 2D binary sequence is stored in a 1D file of size N2.
This is done scanning the 2D matrix with a Hilbert’s curve.
The 1D file flat_matrix is compressed using

Z = gzip.compress(flat_matrix,9)
and then the size of the zipped file Z is measured, giving
Cd . C1 is obtained measuring the size of a compressed vector
of size N2 containing 0’s and 1’s chosen independently and
uniformly at random. C0 is obtained measuring the size of a
compressed vector containing only 0.

2. Compressors designed for images
(PNG, WEBP, GIF, JPEG2000, JPEG-LS)

The 2D binary matrix is transformed into a bitmap B,
substituting all the 1 with 255 (white pixel) and leaving all
elements 0 as 0 (black pixels). For example, in the case of the
JPEG-LS, the bitmap B is compressed using

with io.BytesIO() as image_file:
image = Image.fromarray(B)
image.save(image_file, ’jpeg-ls’)

and then the size of the file image_file gives Cd . C1 corre-
sponds to the size of a compressed bitmap containing 0 and
255, randomly sorted with equal probability. C0 is obtained
measuring the size of a compressed bitmap containing only 0.
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