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Abstract. A unit disk graph is the intersection graph of n congruent
disks in the plane. Dominating sets in unit disk graphs are widely studied
due to their application in wireless ad-hoc networks. Since the minimum
dominating set problem for unit disk graphs is NP-hard, several ap-
proximation algorithms with different merits have been proposed in the
literature. On one extreme, there is a linear time 5-approximation algo-
rithm. On another extreme, there are two PTAS whose running times
are polynomials of very high degree. We introduce a linear time approx-
imation algorithm that takes the usual adjacency representation of the
graph as input and attains a 44/9 approximation factor. This approxi-
mation factor is also attained by a second algorithm we present, which
takes the geometric representation of the graph as input and runs in
O(n log n) time, regardless of the number of edges. The analysis of the
approximation factor of the algorithms, both of which are based on local
improvements, exploits an assortment of results from discrete geometry
to prove that certain graphs cannot be unit disk graphs. It is noteworthy
that the dominating sets obtained by our algorithms are also independent
sets.

1 Introduction

A unit disk graph G is a graph whose n vertices can be mapped to points in
the plane and whose m edges are defined by pairs of points within Euclidean
distance at most 1 from one another. Alternatively, one can regard the vertices
of G as mapped to coplanar disks of unit diameter, so that two vertices are
adjacent whenever the corresponding disks intersect.

A dominating set D is a subset of the vertices of a graph such that every
vertex not in D is adjacent to some vertex in D. An independent dominating set
is a dominating set which is also an independent set. Note that any maximal
independent set is an independent dominating set.

Dominating sets in unit disk graphs are widely studied due to their appli-
cation in wireless ad-hoc networks [11]. Since it is NP-hard to compute the



minimum dominating set of a unit disk graph [2], a number of approximation
algorithms have been proposed. Such algorithms are of two main types. Graph-
based algorithms receive as input the adjacency representation of the graph and
assume no knowledge of the point coordinates, whereas geometric algorithms
work in the Real RAM model of computation and receive solely the vertex co-
ordinates as input5. Thus far these two types of algorithms have been tackled
separately in the literature for the dominating set problem in unit disk graphs.
In this paper, we introduce approximation algorithms of both types, benefiting
from the same approximation factor analysis.

Previous algorithms. A graph-based 5-approximation algorithm that runs in
O(n + m) time was presented in [11]. The algorithm computes a maximal in-
dependent set, which is a 5-approximation because unit disk graphs are free of
induced K1,6.

Polynomial-time approximation schemes (PTAS) were first presented as ge-
ometric algorithms [9] and later as graph-based algorithms [14]. Also, a graph-
based PTAS for the more general disk graphs is proposed in [8]. Unfortunately,
the complexities of the existing PTAS are high degree polynomials. For exam-
ple, the PTAS presented in [14] takes O(n225) time to obtain a 5-approximation
(using the analysis from [3]). Although its analysis is not tight, the running time
is too high even for moderately large graphs. The reason is that these PTAS
invoke a subroutine that verifies (by brute force) whether a graph admits a
dominating set with k vertices. Such subroutine is applied to several subgraphs,
and the value of k grows as the approximation error decreases. A similar strategy
is used to obtain a PTAS for the minimum independent dominating set [10].

The lack of fast algorithms with approximation factors less than 5 was no-
ticed in [3], where geometric algorithms with approximation factors of 3 and 4
and running times respectively O(n18) and O(n9) were presented. While a signif-
icant step towards approximating large instances, those algorithms require the
geometric representation of the graph, and the running times are polynomials of
rather high degrees. Linear and near-linear time approximation algorithms con-
stitute an active topic of research, even for problems that can be solved exactly
in polynomial time, such as maximum flow and maximum matching [1, 17].

It is useful to contrast the minimum dominating set problem with the maxi-
mum independent set problem. While a maximal independent set is a 5-approxi-
mation to both problems, it is easy to obtain a geometric 3-approximation to the
maximum independent set problem in O(n log n) time [13]. In the graph-based
version, a related strategy takes roughly O(n5) time, though. No similar results
are known for the minimum dominating set problem.

Unit disk graphs are subject to packing constraints that limit the size of
independent sets (which correspond to disjoint disks) as a function of the distance
between vertices. The existing PTAS for dominating sets in unit disk graphs are
based on some of these packing constraints, such as the bounded growth property :

5 The Real RAM model is a technical necessity, otherwise storing the coordinates of
the vertices would require an exponential number of bits [12].
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the size of an independent set formed by vertices within distance r of a given
vertex is at most (1 + 2r)2. Note, however, that the bounded growth property
is not tight. For example, for r = 1, it gives an upper bound of 9 vertices where
the actual maximum size is 5. Since the bounded growth property is strongly
connected to the problem of packing circles in a circle [6], obtaining exact values
for all r seems unlikely.

Our contribution. Our main result consists of two approximation algorithms: a
graph-based algorithm, which runs in linear O(n + m) time, and its geometric
counterpart, which runs in O(n log n) time in the Real RAM model, regardless
of the number of edges.

The approximation factor of our algorithms is 44/9. The strategy for both
algorithms is to construct a 5-approximate solution using the algorithm from [11]
and to perform subsequent local improvements to that initial dominating set.
Our main lemma (Lemma 7) uses forbidden subgraphs to show that a solution
that admits no local improvement is a 44/9-approximation. Since the dominating
sets produced by our algorithms are independent sets, the same approximation
factor holds for the independent dominating set problem.

Proving that a certain graph is not a unit disk graph (and is therefore a
forbidden induced subgraph) is no easy feat6. We make use of an assortment of
results from discrete geometry in order to prove properties of unit disk graphs
that are interesting per se. For example, we use universal covers and disk packings
to show that the neighborhood of a clique in a unit disk graph contains at most
12 independent vertices. These properties, along with a tighter version of the
bounded growth property, allow us to show that certain graphs are not unit
disk graphs. Consequently, our algorithms employ a broader set of forbidden
subgraphs, including, but not being limited to, the K1,6.

2 Forbidden Subgraphs

In this section, we introduce some lemmas about the structure of unit disk
graphs. These lemmas will be applied to prove our approximation factor in Sec-
tion 3. We start by stating three previous results from the area of discrete ge-
ometry. The first lemma comes from the study of universal covers (for a recent
survey see [7]).

Lemma 1 (Pál [15]). If a set of points P has diameter 1, then P can be
enclosed by a circle of radius 1/

√
3.

Packing congruent disks in a circle is a well studied problem. Exact bounds
on the radius of the smallest circle enclosing k congruent disks are known for
some small values of k, namely k ≤ 13 and k = 19 [6]. The bound for k = 13
will be useful to us.
6 The fastest algorithm to decide known whether a given graph is a unit disk graph

is doubly exponential [16].
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Lemma 2 (Fodor [6]). The radius of the smallest circle in which we can pack
13 points with mutual distances at least 1 is (1 +

√
5)/2.

The density of a packing is the ratio between the covered area and the total
area. The following upper bound is useful when no exact bound is known.

Lemma 3 (Fejes Tóth [5]). Every packing of (at least two) disjoint congruent
disks in a convex region has density at most π/

√
12.

Given a graph G = (V, E) and a vertex v ∈ V , let N(v) denote the open
neighborhood of v and let N [v] = N(v) ∪ {v} denote the closed neighborhood
of v. More generally, the open r-neighborhood of a vertex v is the set of vertices
w such that the distance between v and w in G is exactly r, while the closed
r-neighborhood of a vertex v is the set of vertices w such that the distance
between v and w in G is at most r. For a set S ⊆ V , we let NS(v) = N(v) ∩ S
and NS [v] = N [v]∩S. Finally, given a subgraph G′ of G, the closed neighborhood
of G′ is the set of vertices that belong to the closed neighborhood of some vertex
of G′. The following two lemmas concern neighborhoods in unit disk graphs.

Lemma 4. The closed neighborhood of a clique in a unit disk graph contains at
most 12 independent vertices.

Proof. By Lemma 1, the points which define a clique in a unit disk graph are
contained inside a circle of radius 1/

√
3. Therefore, the points corresponding to

the closed neighborhood of such clique are contained inside a circle of radius
1 + (1/

√
3). By Lemma 2, we have that a circle enclosing 13 points with mutual

distances at least 1 has radius at least (1+
√

5)/2. Since (1+
√

5)/2 > 1+(1/
√

3),
the lemma follows. ut

Lemma 5. Given an integer r ≥ 1, the closed r-neighborhood of a vertex in a
unit disk graph contains at most bπ(2r + 1)2/

√
12c independent vertices.

Proof. All n disks of diameter 1 corresponding to the closed r-neighborhood of a
vertex v must be enclosed by a circle W of radius (2r+1)/2 centered on v. Each
disk of diameter 1 has area π/4 and W has area (2r + 1)2π/4. Using Lemma 3,
we have (n π/4)/((2r + 1)2π/4) ≤ π/

√
12, and the lemma follows. ut

We say that a graph G is (k, `)-pendant if there is a vertex v in G with
k vertices of degree 1 in the open neighborhood of v and ` vertices of degree 1
in the open 2-neighborhood of v. We refer to v as a generator of the (k, `)-
pendant graph. The following lemma bounds the value of the parameter ` for a
(4, `)-pendant unit disk graphs.

Lemma 6. If G is a (4, `)-pendant unit disk graph, then ` ≤ 8.

Proof. Let v be a generator of G. Since K1,6 is a forbidden induced subgraph [11]
and v has 4 neighbors of degree 1, we have that the remaining neighbors of v
together with v itself form a clique. By Lemma 4, we have that 4 + ` ≤ 12. ut
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3 Approximation Algorithms

In this section, we present our approximation algorithms. The key property to
analyze the approximation factor is presented in Lemma 7, while the running
time analyses are presented in Sections 3.1 and 3.2.

Hereafter, let G = (V, E) be a unit disk graph, and let D ⊆ V be an inde-
pendent dominating set of G. If v ∈ D and uv ∈ E, we say that v dominates u
and, conversely, that u is dominated by v.

As already mentioned, unit disk graphs are free of induced K1,6. Therefore,
at most 5 vertices of D may belong to the closed neighborhood of any given
vertex v ∈ V . A corona is a set C ⊆ D consisting of exactly 5 neighbors of some
vertex c ∈ V \ D. Such a vertex c is called a core of the corona C, and it is
not necessarily unique. Notice that the subgraph induced by a corona C and a
corresponding core c is a star, i.e. a graph formed by an independent set and a
universal vertex.

A corona C is said to be reducible if there is a core c of C such that D∪{c}\C
is a dominating set. If no such core exists, C is dubbed irreducible. Given a
reducible corona C and a corresponding core c, we refer to the operation that
converts D into the smaller dominating set D ∪ {c} \ C as a reduction.

Lemma 7. Let G = (V, E) be a unit disk graph, D an independent dominating
set in G, and D∗ a minimum dominating set of G. If D contains no reducible
coronas, then ρ = |D|/|D∗| ≤ 44/9.

Proof. We use a charging argument to bound the ratio between the cardinalities
of D and D∗. Consider that each vertex u ∈ D splits a unit charge evenly among
the vertices in the closed neighborhood ND∗ [u]. The function f : D∗ → (0, 5] be-
low corresponds to the total charges assigned to each vertex v∗ ∈ D∗, accumu-
lating the (fractional) charges that v∗ received from the vertices in ND[v∗]:

f(v∗) =
∑

u∈ND[v∗]

1
|ND∗ [u]|

. (1)

Note that, since D and D∗ are dominating sets, neither ND∗ [u] nor ND[v∗]
are ever empty, and f(v∗) ≤ ND[v∗]. Such function f allows us to write the
cardinality of D as

|D| =
∑

v∗∈D∗

f(v∗).

Since

ρ =
|D|
|D∗|

=
∑

v∗∈D∗ f(v∗)
|D∗|

is precisely the average value of f(·) over the elements of D∗, we obtain the
desired bound ρ ≤ 44/9 by showing that the existence of vertices c∗ in D∗ with
f(c∗) > 44/9 is counterbalanced by a sufficiently large number of vertices x∗ in
D∗ with f(x∗) ≤ 4.
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Fig. 1. Figure for the proof of Lemma 7. A proper, induced subgraph, where squares
were used for a subset of D∗, solid circles for a subset of D (the corona C) and hollow
circles for vertices not in D∪D∗. Vertices w and x∗ are respectively witness and reliever
of core c∗.

Before we continue, we observe that f(c∗) > 44/9 means exactly f(c∗) = 5,
for the sum in (1) has at most 5 terms, all of which are of the form 1/i for integer
i ≥ 1.

Thus, let c∗ be a vertex in D∗ with f(c∗) = 5. Clearly, c∗ /∈ D, otherwise
f(c∗) ≤ |ND[c∗]| = 1, because D is an independent set. Moreover, c∗ must have
exactly 5 neighbors in D, since a greater number of neighbors in D would imply
the existence of an induced K1,6 in G, which is not possible, and a lesser number
would imply f(c∗) ≤ |ND[c∗]| ≤ 4, a contradiction. Vertex c∗ is therefore a core.

Now let C ⊂ D be the corona of which c∗ is a core. Since C is irreducible
(by the hypothesis of the lemma), there must be a vertex w ∈ V \ (C ∪ {c∗}),
such that:

(i) w is only dominated, in D, by vertices that belong to C; and
(ii) w is not adjacent to c∗.

We call w a witness of c∗ (meaning the corona having c∗ as a core fails to be
reducible due to w). Now, for all u ∈ C, it holds that the only vertex in ND∗ [u]
must be the very core c∗, otherwise the contribution of u in (1) would be at
most 1/2, and f(c∗) would be at most 9/2 < 5, a contradiction. In particular,
the witness w cannot belong to D∗. But D∗ is a dominating set, so there must
exist a vertex x∗ ∈ D∗ that is adjacent to w. We call x∗ a reliever of c∗. Figure 1
illustrates this situation.

We now show that |ND[x∗]| ≤ 4. For the sake of contradiction, assume
|ND[x∗]| > 4. Because G is free of induced K1,6, such number must be exactly 5,
so that x∗ is the core of a corona C ′ ⊂ D. However, due to (i) above, NC′(w) = ∅,
hence C ′∪{w} is an independent set of G, constituting, along with the core x∗, an
induced K1,6 in G, a contradiction. Since f(x∗) ≤ |ND[x∗]|, we have f(x∗) ≤ 4.

We have just shown that the existence of a vertex c∗ in D∗ with f(c∗) = 5
implies the existence of a vertex x∗ ∈ D∗ such that f(x∗) ≤ 4. Were this cor-
respondence one-to-one, we would be able to state that the average of f(·) over
the elements of D∗ was no greater than 4.5. Unfortunately, this correspondence
is not necessarily one-to-one, as illustrated in Figure 2.

Still, the lemmas in Section 2 allow us to bound the ratio between the number
of vertices c∗ with f(c∗) = 5 and the number of vertices x∗ for which the values
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Fig. 2. A unit disk graph where 4 distinct cores c∗1, . . . , c
∗
4 share the same reliever x∗.

of f are significantly lower. Let x∗ ∈ D∗ \D be a reliever. In order to obtain the
claimed bound, we consider two cases according to the size of ND[x∗]:

(i) By Lemma 5, the closed 4-neighborhood of x∗ contains at most 73 indepen-
dent vertices. Since each corona contains 5 independent vertices (only adjacent
to their cores), at most b73/5c = 14 coronas may share a common reliever7. Let
c∗1, . . . , c

∗
14 denote the cores of such coronas. If |ND[x∗]| ≤ 3, then the average

value of f(·) among x∗, c∗1, . . . , c
∗
14 is at most

3 + 14 · 5
15

< 4.867.

(ii) By Lemma 6, if |ND[x∗]| = 4, then at most 8 cores c∗1, . . . , c
∗
8 may have x∗

as their common reliever, for otherwise we obtain a (4, 9)-pendant graph, which
cannot be a unit disk graph, . Thus, the average value of f(·) among x∗, c∗1, . . . , c

∗
8

is at most
4 + 8 · 5

9
= 44/9 = 4.888 . . . .

The worst case is therefore the one in which |ND[x∗]| = 4, for an average
ρ = 44/9, and the lemma follows. ut

3.1 Graph-based Algorithm

By Lemma 7, an independent dominating set with no reducible coronas is a 44/9-
approximation to the minimum dominating set. In this section, we describe how
to obtain such set in linear time given the adjacency list representation of the
graph.

We can easily compute a maximal independent set D, which is a 5-approxi-
mation to the minimum dominating set [11], in O(n + m) time. An independent
dominating set with no reducible coronas can then be obtained by iteratively
performing reductions. However, naively performing such reductions leads to a
running time of O(n2m), since (i) there are O(n) candidates to being the core
of a reducible corona, (ii) detecting whether a vertex v is in fact the core of a

7 We would like to thank an anonymous referee for this simplified argument.
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reducible corona by inspecting the 3-neighborhood of v takes O(m) time, and
(iii) we may need to reduce a total of O(n) coronas. Fortunately, the following
algorithm modifies the set D and returns an independent dominating set with
no reducible coronas in O(n + m) time.

(1) For each vertex v ∈ V \D, compute ND(v).
(2) For each vertex v ∈ V \D, if |ND(v)| = 5, add ND(v) to the list of coronas
C (unless it is already there).

(3) Let B ← ∅. For each corona C ∈ C, if there is a vertex c such that D∪{c}\C
is a dominating set, then add c to the set B.

(4) Choose a maximal subset B′ of B such that the pairwise distance of the
vertices in B′ is at least 5.

(5) For each vertex c ∈ B′, perform a reduction D ← D ∪ {c} \ND(c).
(6) Repeat all the steps above until B′ = ∅.

The algorithm is correct since all changes made to D along its execution
preserve the property that D is an independent dominating set. Notice that, in
step (4), we only reduce coronas that are sufficiently far from each other, in order
to guarantee that we do not reduce a corona that may have ceased to be reducible
due to a previous reduction. Moreover, the algorithm always terminates because
the size of D decreases at every iteration, except for the last one. Next, we show
that the running time is O(n + m).

Step (1) can be easily implemented to run in O(n+m) time. To execute step
(2) in O(n + m) time, we must determine in constant time whether a corona
is already in the list C. This can be achieved by indexing each corona C by an
arbitrary vertex v ∈ C (say, the one with the lowest index), and by storing with
v a list of coronas that are in C and whose index is v. Note that, because of
the packing constraints inherent to unit disk graphs, the number of coronas that
contain a given vertex is O(1).

Step (3) can be implemented as follows (for each corona C ∈ C):

(3a) Let S1 be the union of the open neighborhoods of the 5 vertices in C.
(3b) Let S2 be the subset of S1 containing only the vertices v with ND(v) ⊆ C.
(3c) Let S3 be the intersection of the closed neighborhoods N [v] for all v ∈

S2 ∪ C.
(3d) If S3 6= ∅, then add an arbitrary vertex of S3 to the set B.

The steps above take O(n + m) total time when executed for all coronas
C ∈ C, because the number of coronas that contain or are adjacent to a given
vertex is also O(1) by packing constraints.

It is easy to perform steps (4) and (5) in linear time. It remains to show
that the whole process is only repeated for a constant number of iterations. Let
C1, . . . , Ck denote the set of reducible coronas at each iteration of the algorithm
with Ck = ∅. Note that the reductions performed in step (5) never create a new
reducible corona. Therefore C1 ⊃ · · · ⊃ Ck. Let C denote a corona that was
reduced in the last iteration k. If C was not reduced during a previous iteration
i < k, then another corona within constant distance from C was reduced at that
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very iteration i. Since, again by packing constraints, the maximum number of
coronas within constant distance from C is itself a constant, we have k = O(1).

The following theorem summarizes the result from this section.

Theorem 1. Given the adjacency list representation of a unit disk graph with
n vertices and m edges, we can find a 44/9-approximation to the minimum dom-
inating set in O(n + m) time.

3.2 Geometric Algorithm

In this section, we describe how to obtain an independent dominating set with
no reducible corona in O(n log n) time given the geometric representation of
the graph. The input for our algorithm is a set P of n points. Without loss
of generality, we assume that the corresponding unit disk graph is connected
(otherwise, we can compute the connected components in O(n log n) time using
a Delaunay triangulation [4]). We use terms related to vertices of the graph and
to the corresponding points interchangeably. For example, we say a set of points
is independent if all pairwise distances are greater than 1. We start by showing
how to compute a maximal independent set D in O(n log n) time.

First, we partition the points of P according to an infinite grid with square
cells of side 1. Without loss of generality, we assume that no point lies on the
boundary of a grid cell. Given p ∈ P , let σ(p) denote the grid cell that contains p.
This partitioning takes O(n log n) time by sorting the points separately by x-
coordinates and by y-coordinates and then performing two sweeps (note that
the diameter of the point set is at most n due to the graph connectivity).

We refer to the set of at most 8 non-empty grid cells surrounding a cell Q as
the open vicinity of Q. We refer to the union of Q and its open vicinity as the
closed vicinity of Q. We use N(Q) and N [Q] to represent the open and closed
vicinities, respectively. Note that a point p can only be adjacent to points in
the closed vicinity of σ(p), that is, N [p] ⊂ N [σ(p)]. Each point p ∈ P stores
a pointer to its containing cell σ(p). Also, each cell stores the list of points it
contains and pointers to the cells in its open vicinity.

We are now ready to construct a maximal independent set D. We begin by
making a copy P ′ of P , and letting D ← ∅. We repeat the following two steps
while P ′ is non-empty. (i) Choose an arbitrary point p ∈ P ′ and add it to the
set D. (ii) For each point p′ in the closed vicinity of σ(p), remove p′ from P ′

if ‖pp′‖ ≤ 1. When the set P ′ becomes empty, the set D is an independent
dominating set. Disregarding the O(n log n) time to partition P into grid cells,
the process of building the set D takes O(n) time for the following reasons. First,
a cell belongs to the closed vicinity of a constant number of cells. Second, the
number of points inside a cell with pairwise distances greater than 1 is at most
a constant.

We now have that D is a maximal independent set, and therefore a 5-
approximation to the minimum dominating set. Next, we show how to modify
D in order to produce an independent dominating set with no reducible corona,
therefore a 44/9-approximation to the minimum dominating set. The algorithm
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follows a close parallel to the one in Section 3.1, but each step takes no more
than O(n log n) time using the geometric representation of the graph.

Since D is an independent set and a grid cell Q has side 1, a simple packing
argument shows that |D ∩Q| ≤ 4. We store the set D ∩Q in the corresponding
cell Q. In order to compute ND(p), it suffices to inspect at most the 36 points in
D ∩Q for Q ∈ N [σ(p)]. We can then build a list of coronas in O(n) time (steps
(1) and (2) of Section 3.1).

To perform step (3), we need to find out whether there is a vertex c such
that D∪{c} \C is a dominating set, for each corona C = {p1, . . . , p5}. First, we
make S1 the union of ND(pi) for 1 ≤ i ≤ 5. Then, we make S2 the subset of S1

containing only the points p with ND(p) ⊆ C. These first two steps are similar
to steps (3a) and (3b) in Section 3.1. The remaining sub-steps of step (3) are
significantly different, though.

We proceed by making S3 = S2∪C. We need to determine whether there is a
point p ∈ S3 that is adjacent to all points in S3. For each p ∈ S3, let β(p) denote
the disk of radius 1 centered at p. Let R denote the convex region defined by
the intersection of β(p) for all p ∈ S3. A point p is adjacent to all points in S3

if and only if p ∈ R. We can compute the region R in O(|S3| log |S3|) time using
divide-and-conquer in a manner analogous to half-plane intersection [4]. We can
then test whether each point p ∈ S3 belongs to the region R in logarithmic time
using binary search. If there is at least one point p ∈ S3 ∩ R, then we add p to
the set B. Therefore, the whole step (3) takes O(n log n) time.

In step (4) of the geometric algorithm, we choose an alternative set B′ ⊂ B
which can be computed in O(n) time as follows. For each p ∈ B, we add p to
B′ and then remove from B all points that are contained in the cells within
Euclidean distance at most 4 of σ(p). Since by packing constraints there are
O(1) points in the intersection of D and the closed vicinity of a cell, we can
easily perform step (5) in O(n) time.

We summarize the result from this section in the following theorem.

Theorem 2. Given a set of n points representing a unit disk graph, we can find
a 44/9-approximation to the minimum dominating set in O(n log n) time in the
Real RAM model of computation.

4 Conclusion and Open Problems

We introduced novel linear and near-linear time algorithms for approximating
the minimum dominating set and minimum independent dominating set in a
unit disk graph, proving an upper bound of 44/9 to the approximation factor of
our algorithms. Nevertheless, the best lower bound we are aware of is 4.8, which
is attained by the unit disk graph in Figure 2. Closing this gap would likely
require the development of new tools to prove that certain graphs are not unit
disk graphs. Computer generated proofs may be useful towards this goal.
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