
Dijkstra Graphs

Lucila M. S. Bentob, Davidson R. Boccardob, Raphael C. S. Machadoc,d,
Flávio K. Miyazawaf, Vińıcius G. Pereira de Sáa, Jayme L. Szwarcfitera,e,∗

aUFRJ – Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
bClavis Information Security Group, Rio de Janeiro, Brazil

cINMETRO – Nation. Inst. of Metrology, Quality and Technology, Duque de Caxias, Brazil
dCEFET/RJ – Federal Center for Technological Education, Rio de Janeiro, Brazil

eUERJ – State University of Rio de Janeiro, Rio de Janeiro, Brazil
fUNICAMP – University of Campinas, Campinas, Brazil

Abstract

We revisit a concept that has been central in some early stages of computer

science, that of structured programming: a set of rules that an algorithm must

follow in order to acquire a certain desirable structure. While much has been

written about structured programming, an important issue has been left unan-

swered: given an arbitrary program, describe an algorithm to decide whether

or not it is structured, that is, whether it conforms to the stated principles of

structured programming. We refer to a classical concept of structured program-

ming, as described by Dijkstra. By employing graph theoretic techniques, we

formulate an efficient algorithm for answering this question. First, we introduce

the class of graphs which correspond to structured programs, which we call Di-

jkstra Graphs. Then we present a greedy O(n)-time algorithm for recognizing

such graphs. Furthermore, we describe an isomorphism algorithm for Dijkstra

graphs, whose complexity is also linear in the number of vertices of the graph.

Keywords: graph algorithms, graph isomorphism, reducibility, structured

programming

IThis paper is dedicated to Pavol Hell, Jacek Blazewicz and Martine Labbé.
Author 3 has been supported by CNPq and FAPERJ. Author 4 has been supported by
FAPESP and CNPq. Authors 5 and 6 have been supported by CNPq, Brazil.

∗Corresponding author
Email address: jayme@nce.ufrj.br (Jayme L. Szwarcfiter)

Preprint submitted to Discrete Applied Mathematics August 3, 2017

1. Introduction

Structured programming was one of the main topics in computer science

in the years around 1970. It can be viewed as a method for the development

and description of algorithms and programs. Basically, it consists of a top-down

formulation of the algorithm, breaking it into blocks or modules. The blocks are5

stepwise refined, possibly generating new, smaller blocks, until refinements no

longer exist. The technique constrains the description of the modules to contain

only three basic control structures: sequence, selection and iteration. The first

of them corresponds to sequential statements of the algorithm; the second refers

to comparisons leading to different outcomes; the last one corresponds to sets10

of actions performed repeatedly in the algorithm.

One of the early papers about structured programming was the article by

Dijkstra “Go-to statement considered harmful” [5], which brought the idea that

the unrestricted use of go-to statements is incompatible with well structured al-

gorithms. That paper was soon followed by a discussion in the literature about15

go-to’s, as in the papers by Knuth [13], Knuth and Floyd [14] and Wulf [27].

Other classical papers are those by Dahl and Hoare [4] and Hoare [12], among

others. The basic ideas of structured programming appear in detail in an arti-

cle by Dijkstra [6]. The concept has been also handled by Wirth [26], among

others. Kosaraju [16] describes the idea of reducibility among flowcharts. More-20

over, [16] has introduced and characterized the class of D-charts, which in fact

are graphs properly containing all those which originate from structured pro-

gramming. Williams [24] also describes variations of different forms of struc-

turedness, including those by Dijkstra, as well as D-charts. The different forms

of unstructuredness were described in papers by Williams [23] and McCabe [18].25

The conversion of a unstructured flow diagram into a structured one has been

considered by Williams and Ossher [25], and Oulsnam [19]. Formal aspects of

structured programming include the papers by Böhm and Jacopini [2], Harel [8],

and Kozen and Tseng [17]. A mathematical theory for modeling structuredness,

designed for flow graphs, in general, has been described by Fenton, Whitty and30

2

Kaposi [7]. The actual influence of the concept of structured programming in

the development of algorithms for solving various problems in different areas

occurred right from the start, either explicitly, as in the papers by Henderson

and Snow [11], and Knuth and Szwarcfiter [15], or implicitly as in the various

graph algorithms by Tarjan, e.g. [20, 22].35

A natural question regarding structured programming is to recognize whether

a given program is structured. To our knowledge, such a question has not been

solved neither in the early stages of structured programming, nor later. This is

the main purpose of the present paper. We formulate an algorithm for recog-

nizing whether a given program is structured, according to Dijkstra’s model [6].40

Note that the input comprises the binary code, not the source code. A well-

known representation that comes in handy is that of the (control) flow graph of

a program. A maximal straight line in the program’s instructions corresponds

to a basic block, and is represented by a vertex in that graph. A directed

edge AB (from the exit of block A to the start of block B) represents the pro-45

gram flowing from A to B at runtime. Considering as input the control flow

graph of the program, the problem becomes graph-theoretic: given a flow graph,

decide whether it has been produced by a structured program. We employ a re-

ducibility method, whose reduction operations iteratively obtain smaller graphs.

Reducibility methods of this kind have been applied in papers, as [16, 21].50

In this paper, we first define the class of graphs which correspond to struc-

tured programs. Such class has then been named as Dijkstra graphs. We describe

a characterization that leads to a greedy O(n) time recognition algorithm for

a Dijkstra graph with n vertices. Among the potential applications of the pro-

posed algorithm, we can mention software watermarking through graphs [1, 3].55

Additionally, we formulate an isomorphism algorithm for the class of Dijkstra

graphs. The method consists of defining a convenient code for a graph, which

consists of a string of integers. Such a code uniquely identifies the graph, and it

is shown that two Dijkstra graphs are isomorphic if and only if their codes coin-

cide. The code itself has size O(n) and the time complexity of the isomorphism60

algorithm is also O(n).

3

Some basic definitions and terminology are given in the next section. Sec-

tion 3 defines the class of Dijkstra graphs, whose recognition is described in the

Section 4. A method for verifying isomorphism of Dijkstra graphs is given in

Section 5. Some additional remarks, as well as a generalization of the class,65

form the last section.

2. Preliminaries

In this paper, all graphs are finite and directed. For a graph G, we denote

its vertex and edge sets by V (G) and E(G), respectively, with |V (G)| = n,

|E(G)| = m. For v, w ∈ V (G), an edge from v to w is written as vw. We say70

vw is an out-edge of v and an in-edge of w, with w an out-neighbor of v, and v

an in-neighbor of w. We denote by N+
G (v) and N−G (v) the sets of out-neighbors

and in-neighbors of v, respectively. We may drop the subscript when the graph

is clear from the context. For S ⊆ V , define N+(S) = ∪v∈SN+(v). Also, we

write N2+(v) meaning N+(N+(v)). For v, w ∈ V (G), v reaches w when there is75

a path in G from v to w. A source of G is a vertex that reaches all other vertices

in G, while a sink is one which reaches no vertex, except itself. Denote by s(G)

and t(G), respectively, a source and a sink of G. A (control) flow graph G is

one which contains a distinguished source s(G). A source-sink graph contains

both a distinguished source s(G) and a distinguished sink t(G). A trivial graph80

contains a single vertex.

A graph with no directed cycles is called acyclic. In an acyclic graph if there

is a path from vertex v to vertex w, then v is an ancestor of w, and the latter a

descendant of v. Let G be a flow graph with source s(G), and C a cycle of G.

The cycle C is called single-entry if it contains a vertex v ∈ C that separates85

s(G) from the vertices of C \ {v}. A flow graph in which each of its cycles is

single-entry is called reducible. Reducible graphs were characterized by Hecht

and Ullman [9, 10], while efficient recognition has been described by Tarjan [21].

In a depth-first search (DFS) of a directed graph, in each step a vertex is

inserted in a stack, or removed from it. Every vertex is inserted and removed90

4

from the stack exactly once. An edge vw ∈ E(G), such that v is inserted in the

stack after w, and before the removal of w, is called a cycle edge. Let EC be the

set of cycle edges of a graph, relative to some DFS. Clearly, G− EC is acyclic.

The following characterization is relevant for our purposes.

Theorem 2.1. [10, 21] A flow graph G is reducible if and only if, for any95

depth-first search of G starting at s(G), the set of cycle edges is invariant.

In a flow graph G, we may write DFS of G, as to mean a DFS of G starting at

s(G). In addition, if G is reducible, we may use the terms ancestor or descendant

of G, as to mean ancestor or descendant of G−EC . A topological sort of a graph

G is a sequence v1, . . . , vn of its vertices, such that vivj ∈ E(G) implies i < j.100

Finally, write G1
∼= G2, to denote that graphs G1, G2 are isomorphic.

3. The Graphs of Structured Programming

In this section, we describe the graphs of structured programming. First, we

introduce a family of graphs, following Dijkstra’s description [6].

A statement graph is defined as being one of the following: (a) trivial graph;105

(b) sequence graph; (c) if graph; (d) if-then-else graph; (e) p-case graph, p ≥ 3;

(f) while graph; (g) repeat graph.

For our purposes, it is convenient to assign labels to the vertices of statement

graphs as follows. Each vertex is either an expansible vertex, labeled X, or a

regular vertex, labeled R. See Figures 1 and 2, where the statement graphs110

are depicted with the corresponding vertex labels. All statement graphs are

source-sink. If there is more than one candidate to be the source of a statement

graph, we choose always the one which appears as the topmost vertex in the

corresponding figure. Then vertex v denotes the source of the graph in each

case of Figures 1 and 2.115

Let G be an unlabeled reducible graph, and H a subgraph of G, having

source s(H) and sink t(H). We say H is closed when

• v ∈ V (H) \ s(H)⇒ N−(v) ⊆ V (H);

5

v
R

X

vR

X

X

vR

XX

X

(a) (b) (c) (d)

v

X or R

Figure 1: Statement graphs (a)-(d)

vR

XX

X

...
X

R

X

R

X

X

(e) (f) (g)

v

X

v

Figure 2: Statement graphs (e)-(g)

• v ∈ V (H) \ t(H)⇒ N+(v) ⊆ V (H); and

• vs(H) is a cycle edge ⇒ v ∈ N+(s(H)).120

Note that the while and repeat graphs, respectively, (f) and (g) of Figure 2,

are isomorphic when considered in an isolated framework. However, this is not

so in the context of flow reducible graphs, as observed in the lemma below.

Lemma 3.1. Let G be a flow reducible graph, containing both a while graph A

and a repeat graph B, as induced subgraphs. Then A and B are distinguishable125

subgraphs, even when there are no labels.

Proof. The cycle edge, which is an invariant for flow reducible graphs, can dis-

tinguish between the while and repeat graph. In the while graph the source has

an out-edge to the sink, while this is not so in the repeat graph.

Let H be an induced subgraph of G. Say H is prime when it is closed and130

isomorphic to some non-trivial statement graph.

6

HG

s(H)

t(H)

N+(v)

G

N+(v)

N-(v)

v

N-(v)

Figure 3: Expansion operation

HG

s(H)

t(H)

N
+(t(H))

N
-(s(H))

G

N
+(t(H))

N
-(s(H))

s(H)

Figure 4: Contraction operation

Next, let G,H be two graphs, V (G) ∩ V (H) = ∅, H source-sink, v ∈ V (G).

The expansion of v into a source-sink graph H (Figure 3) consists of replac-

ing v by H, in G, such that N−G (s(H)) := N−G (v), N+
G (t(H)) := N+

G (v), and

preserving the remaining adjacencies.135

Similarly, in the contraction of a source-sink graph H into a single vertex

(Figure 4), we identify (coalesce) the vertices of H into the source s(H) of H,

and remove all possible parallel edges and loops.

A Dijkstra graph (DG) is one whose vertices are labeled X or R, recursively

defined as:140

1. A trivial graph is a DG.

2. Any graph obtained from a DG by expanding some X-vertex into a state-

ment graph is also a DG (See Figure 5).

The above definition leads directly to a method for constructing Dijkstra

graphs, as follows. Find a sequence of graphs G0, . . . , Gk, such that G0 is the145

trivial graph, and Gi is obtained from Gi−1, i ≥ 1, by expanding some X-vertex

7

R

X

1
X

1

2 3

4

X X

R

X

1

2

4

R

5
X

6
X

3
X

R
1

2
R

5
X

6
X

4X

R3

7
X

8
X

R
1

2
R

5
X

6
X

R3

7
X

8
X

4
R

9
X

R
1

2
R

5
R

6
R

R3

7
R

8
R

4
R

9
R

Figure 5: Obtaining a Dijkstra graph via vertex expansions

v of it into a statement graph H.

It is relevant to note that the labels are used merely for constructing the

graphs. For the actual recognition process, there are no labels. We are interested

in the problem of deciding whether a given unlabeled flow graph is actually a150

Dijkstra graph.

4. Recognition of Dijkstra Graphs

By hypothesis, we are given an arbitrary unlabeled flow graph G, and the

aim is to decide whether or not G is a DG.

4.1. Basic Lemmas155

We describe some lemmas which are implicitly employed in the recognition

process.

Lemma 4.1. If G is a Dijkstra graph, then

(i) G contains some prime subgraph;

(ii) G is a source-sink graph; and160

8

(iii) G is reducible.

Proof. By definition, there is a sequence of graphs G0, . . . , Gk, where G0 is

trivial, Gk = G and Gi is obtained from Gi−1 by expanding some X-vertex

vi−1 ∈ V (Gi−1) into a statement graph Hi ⊆ Gi. Then no vertex vi ∈ V (Hi),

except s(Hi) has in-neighbors outside Hi, and also no vertex vi ∈ V (Hi), except165

t(Hi), has out-neighbors outside Hi. Furthermore, if Hi contains any cycle then

Hi is necessarily a while graph or a repeat graph. The latter implies that such a

cycle is s(H)v, where v ∈ N+(s(H)). Therefore Hi is prime in Gi meaning that

(i) holds. To show (ii) and (iii), first observe that any statement graph is single-

source and reducible. Next, apply induction. For G0, there is nothing to prove.170

Assume it holds for Gi, i > 1. Let vi−1 ∈ V (Gi−1) be the vertex that expanded

into the subgraph Hi ⊆ Gi. Then the external neighborhoods of Hi coincide

with the neighborhoods of vi−1, respectively. Consequently, Gi is single-source.

Now, let Ci be any cycle of Gi, if existing. If Ci∩Hi = ∅ then Ci is single-entry,

since Gi−1 is reducible. Otherwise, if Ci ⊂ V (Hi) the same is valid, since any175

statement graph is reducible. Finally, if Ci 6⊂ V (Hi), then vi−1 is contained in

a single-entry cycle Ci−1 of Gi−1. Then Ci has been formed by Ci−1, replacing

vi−1 by a path contained in Hi. Since Ci−1 is single-entry, it follows that Ci must

be so.

Denote by H(G) the set of non-trivial prime graphs of G. Let H,H ′ ∈ H(G).180

Call H,H ′ independent when

• V (H) ∩ V (H ′) = ∅, or

• V (H) ∩ V (H ′) = {v}, where v = s(H) = t(H ′) or v = t(H) = s(H ′).

Lemma 4.2. (Prime Independency): If H,H ′ ∈ H(G) then H,H ′ are indepen-

dent.185

Proof. If V (H)∩V (H ′) = ∅ the lemma holds. Otherwise, let v ∈ V (H)∩V (H ′).

The alternatives v = s(H1) = s(H2), v = t(H1) = t(H2), v 6= s(H1), t(H1)

or v 6= s(H2), t(H2) do not occur because they imply H1 or H2 not to be

9

H

s(H)

t(H)

H'

s(H')

t(H')

or

H

s(H)

H'

t(H) = s(H')

t(H')

Figure 6: Independent primes

closed. Next, let v1, v2 ∈ V (H1) ∩ V (H2), v1 6= v2. In this situation, examine

the alternative where v1 = s(H1) = t(H2) and v2 = s(H2) = t(H1). The190

latter implies that exactly one of H1 or H2, say H2, is a while graph or a

repeat graph. Then there is a cycle edge ws(H1), satisfying w ∈ N−(s(H1))

and w ∈ V (H2) \ {t(H2)}. Consequently, w 6∈ N+(s(H1)), contradicting H1

to be closed. The only remaining alternative is V (H1) ∩ V (H2) = {v}, with

v = s(H1) = t(H2) or v = s(H2) = t(H1). Then H1, H2 are indeed independent195

(see Figure 6).

For a graph G, denote by G ↓ H the graph obtained from G by contracting

H. For v ∈ V (G), the image of v in G ↓ H, denoted IG↓H(v), is

IG↓H(v) =

 v, if v 6∈ V (H)

s(H), otherwise.

For V ′ ⊆ V (G), define the (subset) image of V ′ in G ↓ H, as IG↓H(V ′) =

∪v∈V ′IG↓H(v). Similarly, for H ′ ⊆ G, the (subgraph) image of H ′ in G ↓ H,200

denoted by IG↓H(H ′), is the subgraph induced in G ↓ H by the subset of vertices

IG↓H(V (H ′)).

Let G be an arbitrary flow graph, H,H ′ ∈ H(G), H 6= H ′.

Lemma 4.3. (Prime preservation): If H,H ′ ∈ H(G), H 6= H ′, then IG↓H(H ′) ∈

H(G ↓ H).205

Proof. By Lemma 3, H,H ′ ∈ H(G), H 6= H ′. By Lemma 4.2, H,H ′ are in-

dependent. If H,H ′ are disjoint the contraction of H does not affect H ′, and

10

the lemma holds. Otherwise, by the independence condition, it follows that

V (H) ∩ V (H ′) = {v}, where v = s(H) = t(H ′) or v = s(H ′) = t(H). Ex-

amine the first of these alternatives. By contracting H, all neighborhoods of210

the vertices of IG↓H(H ′) remain unchanged, except that of IG↓H(s(H ′)), since

its in-neighborhood becomes equal to N−G (s(H)). On the other hand, the con-

traction of H into v cannot introduce new cycles in H ′. Consequently, H ′

preserves in G ↓ H its property of being a non-trivial and closed statement

graph, moreover, prime. Finally, suppose v = s(H) = t(H ′). Again, the215

neighborhoods of the vertices of IG↓H(H ′) are preserved, except possibly the

out-neighborhoods of the vertices of IG↓H(t(H ′)), which become N+
G (t(H)),

after possibly removing self-loops. Consequently, IG↓H(H ′) ∈ H(G ↓ H).

Lemma 4.4. (Commutative law): If subgraphs H,H ′ ∈ H(G), it follows that220

(G ↓ H) ↓ (IG↓H(H ′)) ∼= (G ↓ H ′) ↓ (IG↓H′(H)).

Proof. Let A ∼= (G ↓ H) ↓ (IG↓H(H ′)) and B ∼= (G ↓ H ′) ↓ (IG↓H′(H)).

By Lemma 4.2, H,H ′ are independent. First, suppose H,H ′ are disjoint. Then

IG↓H(H ′) = H ′ and IG↓H′(H) = H. It follows that, in both graphs A and B, the

subgraphs H and H ′ are respectively replaced by a pair of non-adjacent vertices,225

whose in-neighborhoods are N−G (s(H)) and N−G (s(H ′)), and out-neighborhoods

N+
G (t(H)) and N+

G (t(H ′)), respectively. Then A = B. In the second alter-

natives, suppose H,H ′ are not disjoint. Then V (H) ∩ V (H ′) = {v}, where

v = s(H) = t(H ′), or v = t(H) = s(H ′). In both cases, and in both graphs

A and B, the subgraphs H and H ′ are contracted into a common vertex w.230

When v = s(H) = t(H ′), it follows N−A (w) = N−G (s(H ′)) = N−B (w) and

N+
A (w) = N+

G (t(H)) = N+
B (w). Finally, when v = t(H) = s(H ′), we obtain

a similar result. Consequently, A = B in any situation.

4.2. Contractile Sequences

A sequence of graphs G0, . . . , Gk is a contractile sequence for a graph G,235

when

11

• G ∼= G0, and

• Gi+1
∼= (Gi ↓ Hi), for some Hi ∈ H(Gi), i < k. Call Hi the contracting

prime of Gi.

We say G0, . . . , Gk is maximal when H(Gk) = ∅. In particular, if Gk is the240

trivial graph then G0, . . . , Gk is maximal.

Let G0, . . . , Gk, be a contractile sequence of G, and Hj the contracting

prime of Gj . That is, Gj+1
∼= (Gj ↓ Hj), 0 ≤ j < k. For H ′j ⊆ Gj and q ≥ j,

the iterated image of H ′j in Gq is the subgraph IGq (H
′

j) of Gq, obtained by245

iteratively finding the image IGj+1(H
′

j) of H
′

j in Gj+1 = Gj ↓ Hj , and then the

image IGj+2
(H
′

j) of IGj+1
(H
′

j) in Gj+2 = Gj+1 ↓ Hj+1, and so on until reaching

the image IGq
(H
′

j) of IGq−1
(H
′

j) in Gq = Gq−1 ↓ Hq. That is IGq
(H
′

j) can be

defined recursively as

IGq
(H ′j) =

 H ′j , if q = j

IGq−1↓Hq−1(IGq−1(H ′j)), otherwise.

Finally, we describe the required characterization.250

Theorem 4.5. Let G be an arbitrary flow graph, with G0, . . . , Gk and G′0, . . . , G
′
k′

two maximal contractile sequences of G. Then Gk
∼= G′k′ . Furthermore, k = k′.

Proof. Let G0, . . . , Gk and G′0, . . . , G
′
k′ be two maximal contractile sequences,

denoted respectively by S and S′ of a graph G. Let Hj and H ′j be the contracting

primes of Gj and G′j , respectively. That is, Gj+1
∼= (Gj ↓ Hj) and G′j+1

∼= (G′j ↓255

H ′j), j < k and j < k′. Without loss of generality, assume k ≤ k′. Let i be the

least index, such that Gj
∼= G′j , j ≤ i. Such an index exists since G ∼= G0

∼= G′0.

If i = k then Gk
∼= G′k′ , implying k = k′ and the theorem holds. Otherwise,

i < k, Gi
∼= G′i and Gi+1 6∼= G′i+1. Since Gi

∼= G′i, it follows Hi ∈ H(G′i).

By Lemma 4.3, the iterated image Hiq , of Hi in G′q is preserved as a prime260

subgraph for all G′q, as long as it does not become the contracting prime of

G′q−1. Since G′k′ has no prime subgraph, it follows there exists some index p,

i < p < k′, such that G′p+1
∼= (Gp ↓ Hip), where Hip represents the iterated

12

image of Hi in G′p. Let Hip−1 be the iterated image of Hi in G′p−1. Clearly,

H ′p−1, Hip−1
∈ H(G′p−1), and by Lemma 4.2, H ′p−1 and Hip−1

are independent265

in G′p−1. Since ((G′p−1 ↓ H ′p−1) ↓ Hip) ∼= G′p+1, by Lemma 4.3, it follows that

((G′p−1 ↓ Hip−1
) ↓ H ′′p−1) ∼= G′p+1, where H ′′p−1 represents the image of H ′p−1

in G′p−1 ↓ Hip−1 . Consequently, we have exchanged the positions in S′ of two

contracting primes, respectively at indices p− 1 and p, while preserving graphs

G′q, for q < p− 1 and q > p. In particular, also preserving G′p+1 and the graphs270

lying after G′p+1 in S′, together with their contracting primes.

Finally, apply the above operation iteratively, until eventually the iterated

image of Hi becomes the contracting prime of G′i. In the latter situation, the

two sequences coincide up to index i+1, while preserving the original graphs Gk

and G′k′ . Again, applying iteratively such an argument, we eventually obtain275

that the two sequences turned coincident, preserving the original graphs Gk and

G′k′ . Consequently, Gk
∼= G′k′ and k = k′.

4.3. The Recognition Algorithm

We start with a bound for the number m of edges of Dijkstra graphs.

Lemma 4.6. Let G be a DG graph. Then m ≤ 2n− 2.280

Proof. If G is a DG graph there is a sequence of graphs G0, . . . Gk, where G0

is the trivial graph, Gk
∼= G and Gi is obtained from Gi−1 by expanding an

X-vertex of Gi−1 into a statement graph. Apply induction on the number of

expansions employed in the construction of G. If k = 0 then G is a trivial graph,

which satisfies the lemma. For k ≥ 0, Suppose the lemma true for any graph285

G′ ∼= Gi, i < k. In particular, let Gi
∼= Gk−1. Let n′ and m′ be the number

of vertices and edges of G′, respectively. Then m′ ≤ 2n′ − 2. We know that

Gk has been obtained by expanding a vertex of Gk−1 into a statement graph

H. Consider the alternatives for H. If H is the trivial graph then n = n′ and

m = m′. If H is a sequence graph then n = n′ + 1 and m = m′ + 1. If H is an290

if graph, a while graph or repeat graph then n = n′ + 2 and m = m′ + 3. If H

is an if then else graph or a p-case graph then n = n′ + p+ 1 and m = m′ + 2p,

13

where p is the outdegree of the source of H. In any of these alternatives, a

simple calculation implies m ≤ 2n− 2.

We describe an algorithm for recognizing Dijkstra graphs based on Theo-295

rem 4.5. Let G be a flow reducible graph. Construct a contractile sequence

G0, . . . , Gk of G. That is, find iteratively a non-trivial prime subgraph Hi of

the Gi and contract it, until either the graph becomes trivial or otherwise no

such subgraph exists. In the first case the graph is a DG, while in the second it is

not. Recall from Lemma 4.3 that whenever Gi contains another prime Hj 6= Hi300

then the iterated image of Hj is preserved, as long as it does not become the

contracting prime. On the other hand, the contraction Gi ↓ Hi may generate

a new prime H ′i, as shown in Figure 7. However, the generation of new primes

obeys a rule, described by the lemma below.

v
H

H'

Figure 7: Contracting H generates prime H’

Lemma 4.7. Let G be a reducible graph, H ∈ H(G), H ′ ∈ H(G ↓ H) \ H(G).305

Then s(H) is a proper descendant of s(H ′) in G ↓ H.

Let G be a reducible graph, G0, . . . , Gk a contractile sequence C of G, and

Hi the contracting prime of Gi, 0 ≤ i < k. Say that C is a bottom-up sequence

of G when s(Hi) is not a descendant of s(H), for any prime H 6= Hi of Gi.

The recognition algorithm then becomes as follows. Let G be a reducible310

graph. Traverse G in a bottom-up order. Iteratively, find a lowest vertex v of

G, s.t. v is the source of a prime subgraph H of G. Then contract H. Stop

when no primes exist any longer.

14

A complete description of the algorithm is then detailed. The algorithm

answers YES or NO, according to respectively G is a Dijkstra graph or not.315

Algorithm 1: Dijkstra graphs recognition algorithm

1 G, arbitrary flow graph (no labels)

2 Count the number m of edges of G, stopping counting if m reached

2n− 1.

3 If m > 2n− 2 then return NO

4 EC , set of cycle edges of a DFS of G, starting at s(G)

5 v1, . . . , vn, topological sorting of G− EC

6 i := n

7 while i ≥ 1 do

8 if G is the trivial graph

9 then return YES

10 if vi is the source of a prime subgraph H of G

11 then G := G ↓ H

12 i := i− 1

13 return NO

The correctness of Algorithm 1 follows basically from Theorem 4.5 and

Lemma 4.7. However, the latter relies on the fact that G is a reducible graph,

whereas the input to Algorithm 1 is an arbitrary graph, and no explicit step for

recognizing whether G is a reducible graph is performed. The purpose was to

avoid such a previous recognition, whose complexity is not linear. The lemma320

below justifies it.

Lemma 4.8. Let G be an arbitrary flow graph input to Algorithm 1. If G is

not a reducible graph then the algorithm would correctly answer NO.

Proof. If G is not a reducible graph let EC be the set of cycle edges, relative to

some DFS starting at s(G). Then G contains some cycle C, such that w does325

not separate s(G) from v, where vw ∈ EC is the cycle edge of C. Without loss

15

of generality, consider the innermost of these cycles. The only way in which the

edge vw, or any of its possible images, can be contracted is in the context of

a while or repeat prime subgraph H, in which the cycle would be contracted

into vertex w, or a possible iterated image of it. However there is no possibility330

for H to be identified as such, because the edge entering the cycle from outside

prevents the subgraph to be closed. Consequently, the algorithm necessarily

would answer NO.

As for the complexity, first observe that to decide whether the graph contains

a non-trivial prime subgraph whose source is a given vertex v ∈ V (G), we need335

O|(N+(v)| steps. Therefore, when considering all vertices of G we require O(m)

time. There can be O(n) prime subgraphs altogether, and each time some

prime H is identified, it is contracted. The size of the graph decreases by

|E(H)|. The number of steps required to contract a prime H is O|E(H)|. If

an edge is contracted it is not considered again in the process. Hence each340

edge is examined at most a constant number of times during the entire process.

Finding a topological sorting of a graph can be done in O(m). Thus, the time

complexity is O(m), that is, O(n), by Lemma 4.6.

5. Isomorphism of Dijkstra Graphs

In this section, we describe a linear time algorithm for the isomorphism of345

Dijkstra graphs.

Given a Dijkstra graph G, define a code C(G) for G, s.t. for any two Dijkstra

graphs G1, G2, G1
∼= G2 if and only if C(G1) = C(G2).

As in the recognition algorithm, the codes are obtained by constructing a

bottom-up contractile sequence of each graph. The codes consist of (linear)350

strings and refer explicitly to the statement graphs having source v as depicted

in Figures 1 and 2. The string C(G) that will be coding G is constructed over

an alphabet whose symbols belong to the set {1, . . . ,∆+(G) + 4}, where ∆+(G)

is the maximum out-neighborhood size of G. Let, A,B be a pair of strings.

Denote by A||B the string formed by A, immediately followed by B.355

16

We assign an integer, named type(H), for each statement graph H, a code

C(v) for each vertex v ∈ V (G), and a code C(H) for each prime subgraph H of

a bottom-up contractile sequence of G. The code C(G) of graph G is defined

as equal to C(s(G)). For a subset V ′ ⊆ V (G), the code C(V ′) of V ′ is the

set of strings C(V ′) = {C(vi)|vi ∈ V ′}. Write lex(C(V ′)) = C(v1)||...||C(vr)360

whenever V ′ = {v1, . . . , vr} and C(vi) is lexicographically not greater than

C(vi+1).

Table 1: Statement graph types and codes C(H) of prime subgraphs H

statement type(H) C(H), v = s(H)

graphs H

trivial 1

sequence 2 2||C(N+(v))

if-then 3 3||C(N+(v)) \N+2(v))||C(N+2(v))

while 4 4||C(N+(v) ∩N−(v))||C(N+(v) \N−(v))

repeat 5 5||C(N+(v))||C(N+2(v) \ {v})

if-then-else 6 6||lex(C(N+(v)))||C(N+2(v))

p-case p + 4 p + 4||lex(C(N+(v)))||C(N+2(v))

The types of the statement graphs are shown in the second column of Table 1.

For a vertex v ∈ V (G), the code C(v) is initially set to 1. Subsequently, if v

becomes the source of a prime graph H, the string C(v) is updated by assigning365

C(v) := C(v)||C(H), where C(H) is given by the third column of the table. In

fact it corresponds to the expansion of v. A possible expansion of some vertex

w 6= v contained in H would imply in a new update of C(v), and so iteratively.

5.1. The Isomorphism Algorithm

Let G be a DG. Algorithm 2 constructs the code C(G) for G.370

As an example, we determine the code of the DG of Figure 8. The codes

of all vertices are initially set to 1. Using a bottom-up sequence, the following

vertices vi would be iteratively chosen as sources of primes, leading to codes

17

Algorithm 2: Dijkstra graphs isomorphism algorithm

1 G, DG; EC , set of cycle edges of G

2 Find a topological sorting v1, . . . , vn of G− EC

3 for i = n, n− 1, . . . , 1 do

4 C(vi) := 1

5 if vi is the source of a prime subgraph H then

6 C(vi) := C(vi)||



2||C(N+(vi)), if H is a sequence graph;

3||C(N+(vi) \N+2(vi))||C(N+2(vi)),

if H is an if-then graph;

4||C(N+(vi) ∩N−(vi))||C(N+(vi) \N−(vi)),

if H is a while graph,

5||C(N+(vi))||C(N+2(vi) \ {vi}),

if H is a repeat graph;

6||lex(C(N+(vi)))||C(N+2(vi)),

if H is an if-then-else graph.

p+ 4||lex(C(N+(vi)))||C(N+2(vi)),

if H is a p-case graph.

C(G) := C(v1)

v1

v2

v9 v5

v3

v6

v8

v10

v14

v11 v12

v7

v13

v4

Figure 8: Example for isomorphism algorithm

C(vi):

375

source: v10 ⇒ C(v10) := 12||C(v14) = 121

18

source: v9 ⇒ C(v9) := 16||lex(C(v11), C(v12))||C(v13) = 16111

source: v4 ⇒ C(v4) := 12||C(v9) = 1216111

source: v6 ⇒ C(v6) := 12||C(v7) = 121

source: v3 ⇒ C(v3) := 13||C(v6)||C(v8) = 131211380

source: v2 ⇒ C(v2) := 14||C(v4)||C(v5) = 1412161111

source: v1 ⇒ C(v1) := 16||lex(C(v2), C(v3))||C(v10) = 161312111412161111121

Finally, C(G) := C(v1) = 161312111412161111121

5.2. Correctness and Complexity385

Theorem 5.1. Let G,G′ be Dijkstra graphs, and C(G), C(G′) their codes, re-

spectively. Then G,G′ are isomorphic if and only if C(G) = C(G′).

Proof. First, consider that G,G′ are isomorphic. We show that it implies

C(G) = C(G′). Following the isomorphism algorithm, observe that the number

of 1’s in the strings C(G), C(G′) represents the number of vertices of G,G′,390

respectively, whereas each integer > 1 in the strings, represents the contraction

of a prime subgraph. Furthermore, each prime subgraph H, which is initially

contained in the input graph G, corresponds in C(G), to a substring formed by

the integer type(H) followed by one 1, if type(H) = 2; or two 1’s, if type(H) = 3;

or three 1’s, if 4 ≤ type(H) ≤ 6; or type(H)+1 1’s, if type(H) > 6; respectively.395

Clearly, the same holds for the graph G′ and its code C(G′). The proof is by

induction on the number k of contractions needed to reduce both G and G′ to

a trivial vertex. By Theorem 4.5, k is invariant and applies for both graphs

G and G′. If k = 0 then both G and G′ are trivial graphs, and the theorem

holds, since C(G) = C(G′) = 1. When k > 0, assume that if G− and G′− are400

isomorphic DG graphs which require less than k contractions for reduction then

C(G−) = C(G′−). Furthermore, assume also by the induction hypothesis, that

if v, v′ are vertices of G−, G
′
−, corresponding to 1’s at the same relative positions

in C(G) and C(G−), respectively, then v′ = f(v), where f is the isomorphism

function between G− and G′−. Now, consider the graphs G and G′. Choose a405

19

prime subgraph H of G, and let v = s(H). Let v′ = f(v) be a vertex of G′ corre-

sponding to v by the isomorphism. Since G ∼= G′, it follows that v′ is the source

of a prime subgraph H ′ of G′. Moreover H ∼= H ′. Consider the contractions

G ↓ H and G′ ↓ H ′, leading to graphs G− and G′−, respectively. Let C−(G) and

C−(G′) be the strings obtained from C(G) and C(G′), respectively by contract-410

ing the substrings corresponding to H and H ′, as above. That is, all the 1’s of

C(H) and C(H ′) are compressed into the positions of v = s(H) and v′ = s(H ′),

respectively, while the integers type(H) and type(H ′) become 1, maintaining

their original positions. It follows that C(G−) = C−(G) and C(G′−) = C−(G′).

By the induction hypothesis C(G−) = C(G′−) and the 1’s corresponding to v415

and v′ lie in the same relative positions in the strings. Consequently, by replac-

ing the latter 1’s for the substrings which originally represented H and H ′, we

conclude that indeed C(G) = C(G′), and moreover the induction hypothesis is

still verified. The converse is similar.

Corollary 5.2. Let G be a DG. The following affirmatives hold.420

1. There is a one-to-one correspondence between the 1’s of C(G) and vertices

of G.

2. The code C(G) of G is unique and is a representation of G.

Finally, consider the complexity of the isomorphism algorithm.

Lemma 5.3. Let G be a Dijkstra graph, and C(G) its code. Then |C(G)| =425

n + k ≤ 2n − 1, where n is the number of vertices of G and k the number of

contractions needed to reduce it to a trivial vertex.

Proof. The encoding C(G) consists of exactly n 1’s, together with elements of a

multiset U ⊆ {2, 3, . . . ,∆+(G)+4}. We know that C(G) starts and ends with an

1, and it contains no two consecutive elements of U . Therefore C(G) ≤ 2n− 1.430

When G consists of the induced path Pn, it follows |C(Pn)| = 2n− 1, attaining

the bound.

Theorem 5.4. The isomorphism algorithm terminates within O(n) time.

20

Proof. Recall that m = O(n), by Lemma 4.6. The construction of a bottom-

up contractile sequence requires O(n) steps. For each v ∈ V (G), following the435

isomorphism algorithm, C(v) can be constructed in time |C(v)|. We remark

that lexicographic ordering takes linear time on the total length of the strings

to be sorted. It follows that the algorithm requires no more than O(n) time to

construct the code C(G) of G.

6. Conclusions440

The analysis of control flow graphs and different forms of structuring have

been considered in various papers. To our knowledge, no full characterization

and no recognition algorithm for control flow graphs of structured programs have

been described before. There are some related classes for which characterizations

and efficient recognition algorithms do exist, e.g. the classes of reducible graphs445

and D-charts. However, both contain and are much larger than Dijkstra graphs.

An important question solved in this paper is that of recognizing whether

two control flow graphs (of structured programs) are syntactically equivalent,

i.e., isomorphic. Such question fits in the area of code similarity analysis, with

applications in clone detection, plagiarism and software forensics.450

Since the establishment of structured programming, some new statements

have been proposed to add to the original structures which forms the classical

structured programming, enlarging the collection of allowed statements. Some

of such relevant statements are depicted in Figure 9.

(a) break-while: Allows an early exit from a while statement;455

(b) continue-while: Allows a while statement to proceed, after its original ter-

mination;

(c) break-repeat: Allows an early exit from a repeat statement;

(d) continue-repeat: Allows a repeat statement to proceed, after its original

termination;460

21

v1

v3

R

v2

X
v2p

X

...

v1

v3

Xv2

v2p-1

R

R

v2p+1X

...

X

R v1

v3

R v2

v2p

v4

v2p+1X

R

...

v1

v3

R

4

v2

v2p

v
...

vR

XX

R

R

X

v2p-1

v2p+1

v2p

X

X

R

X

X

X
v2p+1

R

R

(a) (b) (c) (d)

(e)

Figure 9: Generalized Dijkstra graphs

(e) divergent-if-then-else: A selection statement, similar to the standard if-then-

else, except that the comparisons do not converge afterwords to a same

point, but lead to disjoint structures. Note that the corresponding graph

has no longer a (unique) sink.

In fact, the inclusion of some of the above additional control blocks into465

structured programming has been already predicted in some papers, as [13].

The basic ideas and techniques described in the present work can be generalized,

so as to efficiently recognize graphs that incorporate the above statements, in

addition to those of Dijkstra graphs. Similarly, for the isomorphism algorithm.

Acknowledgment470

The authors are grateful to Victor Campos for the helpful discussions and

comments during the French-Brazilian Workshop of Graphs and Optimizations,

in Redonda, CE, Brazil, 2016. He pointed out the possibility of decreasing

the complexity of a previous version of the recognition algorithm from O(n2)

to O(n).475

22

References

[1] L. M. S. Bento, D. Boccardo, R. C. S. Machado, V. G. Pereira de Sá,

J. L. Szwarcfiter, Towards a Provably Resilient Scheme for Graph-Based

Watermarking, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp.

50–63.480

[2] C. Böhm, G. Jacopini, Flow diagrams, turing machines and languages with

only two formation rules, Commun. ACM 9 (1966) 366–371.

[3] C. Collberg, S. Kobourov, E. Carter, C. Thomborson, Error-correcting

graphs for software watermarking, Lecture Notes in Computer Science

2880 (2003) 156–167.485

[4] O.-J. Dahl, C. A. R. Hoare, Structured programming, Academic Press

Ltd., London, UK, UK, 1972, pp. 175–220.

[5] E. W. Dijkstra, Letters to the editor: Go to statement considered harmful,

Commun. ACM 11 (1968) 147–148.

[6] E. W. Dijkstra, Structured programming, Academic Press Ltd., London,490

UK, UK, 1972, pp. 1–82.

[7] N. Fenton, R. Whitty, A. Kaposi, A generalised mathematical theory of

structured programming, Theoretical Computer Science 36 (1985) 145–171.

[8] D. Harel, On folk theorems, Commun. ACM 23 (1980) 379–389.

[9] M. S. Hecht, J. D. Ullman, Flow graph reducibility, in: Proceedings of495

the Fourth Annual ACM Symposium on Theory of Computing, STOC ’72,

ACM, New York, NY, USA, 1972, pp. 238–250.

[10] M. S. Hecht, J. D. Ullman, Characterizations of reducible flow graphs, J.

ACM 21 (1974) 367–375.

[11] P. Henderson, R. Snowdon, An experiment in structured programming,500

BIT Numerical Mathematics 12 (1972) 38–53.

23

[12] C. A. R. Hoare, Structured programming, Academic Press Ltd., London,

UK, UK, 1972, pp. 83–174.

[13] D. E. Knuth, Structured programming with go to statements, ACM Com-

put. Surv. 6 (1974) 261–301.505

[14] D. E. Knuth, R. W. Floyd, Notes on avoiding “go to” statements, Inf.

Process. Lett. 1 (1971) 23–31.

[15] D. E. Knuth, J. L. Szwarcfiter, A structured program to generate all

topological sorting arrangements, Information Processing Letters 2 (1974)

153–157.510

[16] S. R. Kosaraju, Analysis of structured programs, Journal of Computer and

System Sciences 9 (1974) 232–255.

[17] D. Kozen, W.-L. D. Tseng, The Böhm–Jacopini theorem is false, propo-

sitionally, in: P. Audebaud, C. Paulin-Mohring (Eds.), Mathematics of

Program Construction: 9th International Conference, MPC 2008, Mar-515

seille, France, July 15-18, 2008. Proceedings, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2008, pp. 177–192.

[18] T. J. McCabe, A complexity measure, in: Proceedings of the 2nd Inter-

national Conference on Software Engineering, ICSE ’76, IEEE Computer

Society Press, Los Alamitos, CA, USA, 1976, p. 407.520

[19] G. Oulsnam, Unravelling unstructured programs, The Computer Journal

25 (1982) 379–387.

[20] R. Tarjan, Depth first search and linear graph algorithms, SIAM Journal

on Computing 1 (1972) 146–160.

[21] R. Tarjan, Testing flow graph reducibility, in: Proceedings of the Fifth525

Annual ACM Symposium on Theory of Computing, STOC ’73, ACM, New

York, NY, USA, 1973, pp. 96–107.

24

[22] R. Tarjan, Finding dominators in directed graphs, SIAM Journal on Com-

puting 3 (1974) 62–89.

[23] M. H. Williams, Generating structured flow diagrams: the nature of un-530

structuredness, Computer Journal 20 (1977) 45–50.

[24] M. H. Williams, Flowchart schemata and the problem of nomenclature,

Computer Journal 26 (1983) 270–276.

[25] M. H. Williams, H. L. Ossher, Conversion of unstructured flow diagrams

to structured form., Computer Journal 21 (1978) 101–107.535

[26] N. Wirth, Program Development by Stepwise Refinement, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2002, pp. 149–169.

[27] W. A. Wulf, A case against the goto, in: Proceedings of the ACM Annual

Conference - Volume 2, ACM ’72, ACM, New York, NY, USA, 1972, pp.

791–797.540

25

	Introduction
	Preliminaries
	The Graphs of Structured Programming
	Recognition of Dijkstra Graphs
	Basic Lemmas
	Contractile Sequences
	The Recognition Algorithm

	Isomorphism of Dijkstra Graphs
	The Isomorphism Algorithm
	Correctness and Complexity

	Conclusions

