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if the expected behavior of the software embedded in a single device of a CPS
cannot be enforced then the behavior of the whole CPS may be in jeopardy.
Thus, CPS stakeholders like having some level of control over the embedded
software. Third-party demands to control the software, however, conflict with
the intellectual property protection demanded by software developers, since
some level of detail about the software at hand would have to be disclosed. In
the present paper we discuss the issue of controlling the software embedded
in CPS devices and address the problem of how to achieve an increased level
of software control without compromising the protection of intellectual prop-
erty. We propose a two-party fingerprinting scheme that allows for attribution
of responsibility in the case of intellectual property leaks. Our fingerprinting
scheme is such that neither party may obtain an advantage over the other by
misbehaving, misrepresenting or by prematurely aborting the protocol, there-
fore providing a fair means to resolve disputes.
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1 Introduction

A cyber-physical system (CPS) is a system composed of computational devices
and physical environments, where the computational devices can interact via
communication networks, can control physical environments via actuators, and
can receive feedback from physical environments via sensors. In a sense, a CPS
can be understood as a generalization of the classical control systems where
sensors and actuators correspond to much more sophisticated computational
devices that can make local autonomous decisions and global coordinated de-
cisions based on sophisticated logic, which is afforded by the use of embedded-
software smart devices and communication networks (see Figure 1). While the
precise definition of a CPS can vary from author to author, there are several
common examples of CPS in the literature, such as smart grids, autonomous
vehicles, medical monitoring, process control systems, distributed robotics, and
automatic pilot avionics. Because they control physical systems, failures on a
CPS may have catastrophic consequences such as energy blackouts or airplane
crashes. Moreover, CPSs are frequently associated to public infrastructures,
therefore having a large number of stakeholders, including government, reg-
ulators, infrastructure operators, civil rights organizations and citizen, which
turn the governance of such systems into a really complex task.

Fig. 1 Schematic diagram of a Cyber-Physical System.

An important characteristic for proper working of a CPS in the precise
characterization of its composing devices, such as sensors, actuators and other
computational devices. The stakeholders of a CPS need to be aware of each
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device that influences the behavior of the CPS, including the software that is
embedded on such devices. Software control can occur both in the syntactic
level — i.e., by guaranteeing that the software embedded in a device corre-
sponds to a previously validated software version — and in the semantic level
— i.e., by guaranteeing that the prescribed specification is met. In any case,
the need for software control gives origin to a scenario where two potentially
conflicting parts need to interact and cooperate. On one side, CPS stakehold-
ers need to have more control over the software that is embedded in the CPS
devices deployed in several application fields. On the other side, CPS device
manufacturers consider their software as sensitive intellectual property and are
not willing to reveal details of their software, let alone run the risk of propa-
gating them among third parties. Thus, there is a tradeoff between third-party
software control and protection of intellectual property.

Watermarking techniques allow for the embedding of information in a dig-
ital artifact in such a way that the artifacts’ functionalities are not impacted.
Furthermore, the removal of a digital watermark must be a difficult task for
a malicious user, so that an attempt to do so will likely lead to deterioration
or destruction of the host artifact. Much research is under way in distinct
application fields (see Section 2) aiming at the protection of artistic, indus-
trial and intellectual property. However, the resilience of watermarks against
attacks still lacks formalization. Moreover, the applicability of watermarks in
the chain of security protocols still demands further study, since the existing
watermarking schemes do not allow for the attribution of responsibilities in
cases of misuse of the artifact. As we will see, suspicion can usually befall
upon both parties when a dispute takes place. In the context of intellectual
property protection, a watermark that provides unique identification of a dig-
ital artifact is termed fingerprint, and the artifact that carries it is said to be
traceable. Software fingerprints have been used as intellectual property pro-
tection tools: if a fingerprinted software is distributed and an illegal copy is
found afterwards, it will be possible to retrieve its fingerprint and identify the
responsible for the leakage. Software fingerprinting can therefore be used, in
principle, as an ally to achieve software control with an adequate intellectual
property protection level, since a third party that has access to a fingerprinted
software will be discouraged to leak it. That does not eliminate, however, the
risk that one of the parties that had access to it does eventually leak it —
accidentally or intentionally.

The main problem with such fingerprinting methods, as we explain next, is
that they are not fair, since they do not prevent, for one thing, non-repudiation
attacks, which therefore compromises their applicability in dispute resolution
scenarios. A protocol is fair if no party can gain an advantage over other par-
ties by misbehaving, misrepresenting or by prematurely aborting the protocol.
Fairness is an important requirement in exchange protocols. The fairness re-
quirement arises when two parties are willing to exchange digital items, but do
not trust each other. In order to avoid that some of the parties interrupt the
protocol right after receiving the desired digital item, it is important that the
exchange process is atomic, i.e., that all the items are exchanged at once. Some
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classical examples where fairness is a clear requirement are those of contract
signing [18,7], certified messages [38], and selling secrets [38].

It is usually difficult to achieve fairness in two-party protocols. The easiest
way of assuring that an exchange protocol is fair is by recurring to a Trusted
Third Party (TTP): in the first stage both parties deliver their items to the
TTP who will exchange the items in a second stage. The scheme is secure,
as long as the TTP is honest and unquestionable. However, such a protocol
has the disadvantages of any protocol that requires the involvement of a third
party in each and every exchange. Thus, a lot of effort has been put up lately
towards the development of practical, fair exchange protocols.

The fingerprinting problem considered in the present work does not involve
the exchange of items, since only one item — the watermarked software —
is delivered. We can consider fairness as a highly important requirement all
the same. Indeed, as discussed before, there are two potentially conflicting
parties, i.e., the software manufacturer, who developed the software and wants
to protect the intellectual property, and the CPS stakeholder, who wants to
have some level of control over the software that is embedded in a CPS device1.
It can be argued that, if one party is the responsible for fingerprinting the
software, then both parties could have acted maliciously in the event of a
leakage, since both parties had access to the fingerprinted software. In other
words, how could one guarantee that it was not the manufacturer the ill-
intendioned party, willing to impose guilt on a certain user/stakeholder?

To be more concrete, consider the following scenario. Alice wishes to sell
a smart device — i.e. a device with embedded software — to Bob, but fears
that Bob could distribute the software to others. Alice therefore endows the
program with the following sentence: “This software is meant to be used exclu-
sively by Bob and cannot be redistributed.” Alice cautiously employs digital
watermarking techniques to embed the sentence in a way that avoids it being
found and removed by a malicious Bob. A few months later, Alice learns that
Eva is using an embedded software device for the precise same application
as the device Alice delivered to Bob. The device’s behavior looks suspiciously
familiar to Alice, who finds out after due analysis that it happens to have a
copy of the software that was embedded in the device she had sold to Bob.
Alice goes to court. During the trial, Alice provides the judge with the selling
contracts of her device (and software) and the version obtained by Eva, in
which she is able to pinpoint the encoded sentence that explicitly points to
Bob. When interrogated, the defendant Bob denies having criminally shared
it. Moreover, he argues that Alice, being the author of the program, could
herself have inserted the incriminating sentence into any copy of the program
she wished and might as well have distributed the program herself. The judge
grants Bob the benefit of the doubt and dismisses the case for lack of evidence.

In the present paper, we describe a protocol involving two participants:
the seller, henceforth called Alice, and the buyer, henceforth called Bob. The

1 Note that there can be several stakeholders and interested parties, such as users, regu-
lators etc. Their relations, though, will be modelled as two-party relations in this paper.
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protocol will be built in a way that Alice sends to Bob a traceable artifact
whose fingerprint Alice herself will not be able to know a posteriori. Such
property is achieved by making use of the oblivious transfer protocol [34] with
some appropriate modifications. Under such a protocol, it will be possible to
determine—with an arbitrarily low probability of error—the real responsible
for the misuse of the artifact. We also describe a verification mechanism that
does not require the disclosure of the fingerprint contents or location even to
the arbitrator.

The paper is structured as follows. In Section 2, we describe known ap-
proaches to support the protection of digital intellectual property. We intro-
duce our fingerprinting protocol in Section 3. In Section 4, we describe a ver-
ification scheme, based on the partial transfer of knowledge, which keeps the
fingerprint contents and location safe in the case of a trial. Section 5 contains
our concluding remarks.

2 Related Works

2.1 Software control in cyber-physical systems

CPSs are frequently related to critical infrastructures, therefore having a large
number of stakeholders interested in their correct operation. In particular, such
stakeholders now perceive that an appropriate control over a CPS depends on
the control of the software that is embedded in the CPS devices. There are
basically three key points the stakeholder must be confident on:

– that the embedded version of the software indeed functions as it is supposed
to;

– that, under normal operation, the software can not be arbitrarily substi-
tuted by an operator;

– that, during a periodic control and particularly in case of suspicion of
misuse, the CPS stakeholder will have tools to check which precise version
of the software is embedded in a CPS device.

Formally, software control refers to the general problem of establishing an
adequate level of control over the software that is used in a given application.
Software control is not a requirement restricted to cyber-physical systems, and
comprises a series of activities that are classical in Computer Science, namely:

Validation. The ability to verify that a software behaves as specified.
Authorization. The ability to prevent arbitrary software substitution.
Verification. The ability to identify the embedded software version.

The origins of software validation trace back to the very origins of com-
puter programs and their attempted formal definitions. Indeed, classical the-
oretical computer science results refer to the general impossibility of deter-
mining/enforcing properties of programs, such as the well-known theorems by
Turing [40] and Rice [35]. Classical programming analysis tools and their rep-
resentations such as flowcharts, control flow graphs, and call graphs [13] help
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both the development and the characterization of computer programs, and
some formal methods [41] aim at developing software whose behaviors (pos-
sible states and their transitions) can be completely characterized. A myriad
of software engineering methods [5,30] has been developed with the goal of
providing some level of control over complex enterprise information systems.
Despite the large number of methods and tools, the general goal is one and
the same: to provide confidence that the software behaves as it should behave,
performing the tasks it was programmed to perform — and nothing else. In the
field of cyber-physical systems and critical systems in general, it has become in-
creasingly common that government, regulators and users require more mature
validation processes before a new version of software is deployed. Examples in-
clude regulations in Canada and Brazil [11,23], which specify requirements to
be adopted before the approval of metering devices. Both regulations are based
on the International Organization of Legal Metrology’s Guidance document D-
31: General Requirements for Software Controlled Measuring Instruments [31].
In the case of Canada [11], the source code per se does not constitute an in-
put for the validation, as the assessment process is based on functional tests
and documentation review. The regulation in Brazil [23], on the other hand,
relies on source code disclosure to perform deeper validation tests during the
assessment process. It also includes funcional tests and documentation review.

Authorization refers to the process whereby a stakeholder registers their
accordance to a particular software version to be used in a given application.
In the field of cyber-physical systems, it aims at guaranteeing that no software
will be embedded in a device without proper permission. In practice, it means
that the device will have the ability of verifying the credentials of users that
want to update the software, and to check that the new version was authorized
for that application, in the first place — for instance, by means of a digital sig-
nature protocol. Example usages of such a protocol include mobile computing
applications, which assure users that the signed applications are from a known
source and they have not been altered, at least from the last signature [1]. Ap-
ple manufacturer also uses code signing, not only on applications but also to
perform operating system updates on personal computers and mobile devices.
As an example of smart devices that use digital signature protocol, we can cite
the payroll recorders adopted in some countries, in which the software update
is only possible after the authority agency has digitally signed the software.

Verification refers to the ability of proving that the software embedded in
a device corresponds to a version of software previously authorized for that
application. In some countries, the verification of smart meters such as energy
meters and payroll recorders is a requirement [23,24]. The subject has been
extensively studied in the last two decades, coinciding with the widespread
dissemination of smart devices and embedded software in general. Some works
propose the formalization of the basic steps of the verification process [2,19],
while other works are concerned in establishing the root of trust (RoT) [22]. Re-
cently, some works [27,28] propose the use of Physically Unclonable Functions
(PUFs) to integrate the verification process, making it more tamper-resistant.
Kovah et al. [29] present a verification scheme based on time for personal and
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corporate computers, claiming that even with the network delay, it achieves
good results. A similar approach was conducted by Preschern et al. [33] for
safety-critical systems. The work by Francillon et al. [19] maps the minimal
collection of hardware and software components that are needed for a secure
verification, based on a precise definition of the desired verification service.
Armknecht2013 et al. [2] present a security framework that formally captures
security goals, attacker models and various system and design parameters aim-
ing at increasing the confidence on the verification process.

2.2 Watermarking for intellectual property protection

In the literature, there are plenty of works tackling the embedding of digi-
tal watermarks in artifacts such as images [8], audio and video [8,14], text
documents [3,4], and computer program [42,21]. However, it is in the field of
software protection that the development of fruitful approaches has been most
markedly noted.

Methods for protection of intellectual property of software range from legal
protection to technological protection. From the standpoint of legal protection,
government and industry seek regulatory mechanisms related to industry and
trade, such as patent laws, copyrights and trade secret [32]. From the stand-
point of technological protection, several techniques have been developed to
avoid reverse engineering, tampering and illegal distribution of software [12].

Obfuscation techniques aim at making reverse engineering a difficult task.
They are based on semantics-preserving transformations which manage to con-
siderably worsen the results provided by standard software analysis tools [12].
Tamper-proofing techniques aim at detecting unauthorised software modifi-
cations and responding to them. Detection methods are based on code in-
trospection, state inspection and/or environment verification. The responding
methods vary, but the most common ones are program termination, perfor-
mance degradation or program restore [12].

Software watermarking techniques aim at discouraging piracy by detect-
ing and tracing illegal distributions. They can be classified based on their
embedder and extractor algorithms, and on their static or dynamic nature.
Static watermarks lie within the code or data segments of a program, whereas
dynamic watermarks are built in the program states during its execution. Em-
bedding algorithms are typically based on code substitution, code reordering,
register allocation, control flow graphs, abstraction interpretation and opaque
predicates. Surveys on state-of-the-art watermarking techniques can be found
in [42,21].

The focus of this work is to support dispute resolving by means of an in-
telligent watermark usage. The text is therefore agnostic to embedding and
extracting algorithm’s particularities. In a typical dispute resolving scenario,
two participants claim authorship (or legitimate ownership) of a digital arti-
fact. The goal of the proposed protocol is to allow that a TTP (a judge, an
arbitrator) solves the dispute by comparing the proofs presented by the par-
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ticipants. There are numerous works that deal with this problem for audio,
video and image artifacts [15,36]. We deal with the dispute resolving problem
concerning software. To our knowledge, our study is the first, in the context
of software protection, which deals with the fairness between parties, that is,
which is able to dismiss arguments about the seller’s (ill-)intentions. Moreover,
it is to our knowledge the first to provide a verification scheme in which the
arbitrator does not need to have access to the fingerprint itself. This allows
for, say, a partially trustworthy arbitrator.

3 The proposed fingerprinting protocol

As discussed along the paper, the main difficulty in conceiving a fair finger-
printing protocol without recurring to a TTP is the fact that the party respon-
sible for inserting the watermark will necessarily have access to both versions
of the digital artifact: the traceable and the untraceable one. If this party is
ill-intentioned—for example, intending to distribute ilegal copies of the digital
artifact—she may choose to distribute the version that does not incriminate
her; or, equivalently, which does incriminate someone else.

The protocol we propose consists in a modification of the oblivious transfer
protocol. Essentially, we employ the oblivious transfer protocol 1-of-n, where n
is a sufficiently number of functionally equivalent versions of the software, but
each with a syntactically distinct watermark — even though they all identify
the author. In this protocol, one of n possible messages is transmitted, but
Alice (the seller) is unaware of which one was transmitted. Thus, although
the seller has been responsible for inserting the watermark, she does not know
which version was actually received by the buyer. If, later on, Alice finds any
reason to distribute (maliciously) any version of the software, then with high
probability she will distribute a version that was not the same one sent to Bob
(the buyer). And if she distributes all versions, then it will become quite clear
for a judge that the seller herself is to blame. It takes several adjustments
to the protocol to prevent non-repudiation attacks. We describe next such
adjustments, starting from a basic fingerprinting protocol based on oblivious
transfer (Section 3.2) until we get to a more robust version (Section 3.4). Note
that although our motivating problem is the one of fingerprinting software, we
describe the protocols generically for “digital artifacts”. As long as a digital
content — e.g. text files, images, music etc. — can be watermarked, they can
be involved in such protocols.

Through this section, we assume the existence of watermarking tools and
diversity tools, i.e.:

Watermarking assumption. There exist practical tools that receive as input a
digital item together with an information to be embedded in that item and
output an “equivalent” digital item that encodes that input information
(i.e., the information appear as a watermark of the output item).
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Diversity assumption. There exist practical tools that receive as input a digital
item and output an “equivalent” digital item whose content is distinct form
the input.

The theoretical existence of the above described tools is a current research
topic, but in practice, there are several tools in for software watermarking
and software diversity — a good reference for these tools is the book of Coll-
berg [12].

3.1 Basics of oblivious transfer

In the present section, we describe the classical concept of oblivious trans-
fer [34], which is the key tool to achieve fairness in our proposed fingerprinting
protocol. Oblivious transfer allows the transference of an item among a set of
items in such a way that the sender is not aware of which item was transferred.
We illustrate with a concrete example.

Suppose Alice sells digital books and Bob wants to buy a book from Alice.
However, Bob would like to keep secret about the item he is interested in,
either for privacy reasons, or to avoid receiving unwanted advertising in the
future, or for any other reason. The cryptography protocol called oblivious
transfer makes it possible to transfer the electronic content from Alice to Bob
in such way that Alice will have no idea about which content has interested
Bob.

More formally, assume Alice defines m1, ...,mk messages and Bob wants
access to the i-th message from Alice. Essentially, Alice transfers all the mes-
sages m1, ...,mk, each one encrypted with a distinct symmetric key derived
from a key chosen by Bob so that only the i-th encrypted message can be
decrypted by Bob. Further details of this protocol are described in Section 3.

Several oblivious transfer models can be found in the literature, but they
are in a sense equivalent [10,16,17,6]. The oblivious transfer concept plays an
important role in building other more complex protocols [38].

3.2 Initial fingerprinting protocol based on oblivious transfer

We introduce a naive version of a fair fingerprinting protocol that makes use
of the classic version of the oblivious transfer protocol, which allows the trans-
ference of an element from a set without the transmitter knowing which one
was transmitted. We start with this basic version to better understand each
proposed modification, and we evolve to the final protocol step by step after
considering several possible attack models.

Concretely, Alice, a software developer, generates a large number of equiv-
alent versions of the same software — which can be achieved via the use of
software diversity tools [12] — and each version is distinctly watermaked by
Alice — using an watermarking scheme at choice, such as the ones in [9] and
references thereby.
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Basic fingerprinting protocol

1. Alice creates α semantically equivalent variations n1, ..., nα of a digital artifact.
2. Alice watermarks each of the variations of the of a digital artifact.
3. Alice creates α pairs of public/private keys Pr1, Pu1, ..., P rα, Puα, and sends the public

keys Pu1, ..., Puα to Bob.
4. Bob creates a random symmetric key k and encrypts it with one public key Pui among

its α public keys of Alice, resulting in EPui
(k). Bob sends EPui

(k) to Alice.
5. Alice decrypts EPui

(k) with each private key Prj among its α private keys, obtaining
DPrj (EPui

(k)), with j = 1, ..., α.

6. Alice encrypts each artifact nj among its α variations with the key DPrj (EPui
(k)),

obtaining EDPrj
(EPui

(k))(nj), and sends to Bob each EDPrj
(EPui

(k))(nj).

7. Bob decrypts each EDPrj
(EPui

(k))(nj), obtaining Dk(EDPrj
(EPui

(k))(nj)) and only

when i = j will he have a consistent digital artifact.

The key for understanding the above protocol is to note that, in Step 5,
Alice will obtain α “possible keys”, only one of which will be Bob’s actual key
k. It is however impossible for Alice to know which key that is.

To identify responsibilities for improper use of the software, the arbitrator
will need to have access to all the information generated during the protocol
steps: the versions of the original digital artifact, the public and private keys.
The verification protocol, to be executed by the arbitrator, for identifying a
fingerprinted version f(ñ) is the following:

Basic verification protocol

1. Verify if the fingerprint f(ñ) is the same as in any of the traceable artifacts n1, ..., nα.

Observe that is still necessary to guarantee that Alice, in fact, generated α
software versions with distinct fingerprints, and to have mechanisms to ensure
that Bob, in fact, participated of the protocol execution.

3.3 Fingerprinting protocol with guarantee of distinct fingerprints

The verification protocol above allows a simple attack by Alice. Alice can
generate α variants of the digital artifact containing all the same fingerprint.
This allows her to distribute any of the artifacts and blaming Bob. To avoid
this attack, the arbitrator must verify that Alice, in fact, generated α artifacts
with distinct fingerprints. A recent work about the generation and verification
of distinct fingerprints based on a randomized graph-based scheme can be
found in [9].

Verification protocol with a naive test of distinct fingerprints

1. Verify if the fingerprints f(n1), ..., f(fα) are mutually distinct.
2. Verify if the fingerprint f(ñ) is the same as in any of the artifacts n1, ..., nα.
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The modification above seems to be enough to guarantee that Alice can
not distribute one of the artifacts n1, ..., nα because, with high probability, it
will be a distinct artifact from the one obtained by Bob. However, there is no
guarantee that the artifacts shown to the arbitrator are, in fact, the artifacts
involved in the protocol. At this point, the distinction between the aim of the
proposed protocol and that of the classic oblivious transfer protocol should
be clear. In the basic protocol, there is only an interest in transferring an
element from a certain set from Alice to Bob, without Alice knowing which the
transferred element was. In this modified version of the fingerprinting protocol,
it is fundamental that it can be demonstrated later on that all the elements
were involved during the execution of the protocol, that is, the arbitrator
should know which elements could have been transferred to Bob. This necessity
requires some more modifications.

Our protocol will now encompass actions to make sure that Alice indeed
generated α variants of the artifact with different fingerprints. To guarantee
that, the modified protocol includes sending cryptographic hashes of the arti-
facts by Alice to Bob.

Fingerprinting protocol with guarantee of distinct fingerprints

1. Alice creates α semantically equivalent variations n1, ..., nα of a digital artifact.
2. Alice generates cryptographic hashes h(n1), ..., h(nα), signs them and sends to Bob

(h(n1), ..., h(nα), sA(h(n1)|...|h(nα)).
3. Bob verifies the signature of the hashes signed by Alice and returns the cryptographic

hashes signed by him: (h(n1), ..., h(nα), sB(h(n1)|...|h(nα)).
4. Alice verifies the signature of the hashes sent by Bob, creates α pairs of public/private

keys Pr1, Pu1, ..., P rα, Puα, and sends the public keys Pu1, ..., Puα to Bob.
5. Bob creates a random symmetric key k and encrypts it with one public key Pui among

its α public keys of Alice, resulting in EPui
(k). Bob sends EPui

(k) to Alice.
6. Alice decrypts EPui

(k) with each private key Prj among its α private keys, obtaining
DPrj (EPui

(k)), with j = 1, ..., α.

7. Alice encrypts each artifact nj among its α variations with the key DPrj (EPui
(k)),

obtaining EDPrj
(EPui

(k))(nj), and sends to Bob each EDPrj
(EPui

(k))(nj).

8. Bob decrypts each EDPrj
(EPui

(k))(nj), obtaining Dk(EDPrj
(EPui

(k))(nj)) and only

when i = j he will have a consistent digital artifact.

The inclusion of Step 2 makes it possible to check the set of artifacts that
Alice generated during the execution of the protocol. Naturally, the arbitrator
will need to have access to the message (h(n1), ..., h(nα), sA(h(n1)|...|h(nα)) to
execute the verification algorithm. Step 3 indicates that Bob had knowledge
of the cryptographic hashes involved in the protocol. The verification protocol
to be executed by the arbitrator is the following.

Verification protocol to guarantee distinct fingerprints

1. Verify if the signature sA(h(n1)|...|h(nα) is valid and if each artifact ni has the correct
cryptographic hash h(ni).
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2. Verify if the signature sB(h(n1)|...|h(nα)) is valid.
3. Verify if the fingerprints f(n1), ..., f(fα) are mutually distinct.
4. Verify if the fingerprint f(ñ) is the same as in any of the artifacts n1, ..., nα.

The Step 1 allows the arbitrator to certify the set of artifacts involved
during the execution of the protocol, resisting against the identical fingerprints
attack. The Step 2 ensures that Bob was involved during the execution of the
protocol.

3.4 Resistant protocol against non-repudiation attacks

Another challenge for the construction of the proposed fingerprinting protocol
consists in identifying the version sent to Bob. Without it, it is impossible
to the arbitrator imputing blame onto Bob for a possible artifact misuse.
Obviously, this identification must occur a posteriori, i.e., upon the arbitrator’s
request. However, the inputs for this identification must still be provided by
Alice. In practice, the proposed solution consists in Bob sending to Alice a
cryptographic hash of his secret key, together with the digital signature. This
modification can be seen in Step 6.

Resistant protocol against non-repudiation attacks

1. Alice creates α semantically equivalent variations n1, ..., nα of a digital artifact.
2. Alice generates cryptographic hashes h(n1), ..., h(nα), signs and sends them to Bob

(h(n1), ..., h(nα), sA(h(n1)|...|h(nα)).
3. Bob verifies the signature of the hashes signed by Alice and returns the cryptographic

hashes signed by him: (h(n1), ..., h(nα), sB(h(n1)|...|h(nα)).
4. Alice verifies the signature of the hashes signed by Bob, creates α pairs of public/private

keys Pr1, Pu1, ..., P rα, Puα, and sends the public keys Pu1, ..., Puα to Bob.
5. Bob creates a random symmetric key k and encrypts it with one public key Pui among

its α public keys of Alice, resulting in EPui
(k). Bob sends EPui

(k) to Alice.
6. Bob sends to Alice a cryptographic hash h(k) of k, together with the digital signatures

of h(k) and EPui
(k): (h(k), sB(h(k)), sB(EPui

(k)))
7. Alice verifies the signature of the objects signed by Bob and decrypts EPui

(k) with each
private key Prj among its α private keys, obtaining DPrj (EPui

(k)), with j = 1, ..., α.

8. Alice encrypts each artifact nj among its α variations with the key DPrj (EPui
(k)),

obtaining EDPrj
(EPui

(k))(nj), and sends to Bob each EDPrj
(EPui

(k))(nj).

9. Bob decrypts each EDPrj
(EPui

(k))(nj), obtaining Dk(EDPrj
(EPui

(k))(nj)) and only

when i = j he will have a consistent digital artifact.

To execute the new verification algorithm, the arbitrator will need to have
access to k, given by Bob, as well as to h(k), sB(h(k))), EPui

(k) e sB(EPui
(k)).

Access to all α public keys and α private keys generated by Alice is also
necessary.

Verification protocol with identification of Bob’s key
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1. Verify if the signature sA(h(n1)|...|h(nα) is valid and if each artifact ni has the correct
cryptographic hash h(ni).

2. Verify if the signature sB(h(n1)|...|h(nα)) is valid.
3. Verify if the fingerprints f(n1), ..., f(fα) are mutually distinct.
4. Verify if the fingerprint f(ñ) is the same as in any of the artifacts n1, ..., nα
5. Verify if the signatures sB(h(k)) over h(k) and sB(EPui

(k)) over EPui
(k) are valid and

if the key k given by Bob has, in fact, the cryptographic hash h(k).

The Step 5 ensures that Bob was indeed given the same private key en-
crypted with one of Alice’s public keys during the execution of the protocol.
With the informations above, the arbitrator is able to identify the version ni
obtained by Bob—by testing each of Alice’s private keys—and, finally, to ver-
ify whether the fingerprint f(ni)) is the same as the fingerprint f(ñ). Figure 2
wraps up the proposed fingerprinting protocol.

Fig. 2 Proposed fingerprinting protocol.

4 Secure verification protocol for software fingerprinting

In this section, we develop a protocol that allows for fingerprint verification
during a trial without revealing its contents or location, not even to the arbi-
trator. The simple exhibition of its contents or location makes it easier for an
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adversary/attacker to tamper with it. The protocol development starts from a
scheme of partial transfer of knowledge, and afterwards we describe its appli-
cation in the scenario of secure verification of fingerprints. The main advantage
of the use of the partial transfer of knowledge scheme is the possibility to re-
veal information about authorship/ownership embed exactly in the bits to be
shown, without making it any easier for an attacker to infer the content or
location of the fingerprint. Since the transfer is partial, an attacker willing to
remove the fingerprint will not have enough information to locate it within
the artifact, so its removal will remain as hard after the verification as it used
to be before it.

4.1 Partial transfer of knowledge scheme

In Kilian’s doctoral thesis [26], the following problem is described. Bob wants
to factor a number n with 500 bits which is known to be the product of five
prime numbers of 100 bits. Alice knows one of the factors, denoted q, and is
willing to sell 25 of its bits to Bob. Kilian proposes a method that allows Bob to
make sure that Alice indeed knows one of the factors of n, and moreover allows
Bob to make sure that each individual bit of q has been correctly informed by
Alice. The proposed scheme not only allows the disclosure of only some bits of
q but also uses schemes of commitment of individual bits of q to ensure that
those bits will not be disclosed without the consent of Alice. Finally, it allows
for the use of oblivious transfer in such a way that Alice is unaware of the bits
that get actually disclosed to Bob.

Next, we present a scheme for a simplified scenario of disclosure of some
bits of q, allowing us to observe essential aspects of the protocol, which we have
referred to as “partial transfer of knowledge”. In the proposed scenario, Alice is
not financially interested in the bits to be transferred: Alice is willing to reveal
some bits of q to anyone wanting to know them. On the other hand, Alice
only agrees to reveal a certain subset of bits of q—by convention, we assume
that Alice always reveal the most significant bits of q, although her choice
is arbitrary. The fact that such set is predetermined makes it unnecessary to
use oblivious transfer here. In such a scenario, Alice is able to show the most
significant bits of q, proving to whom it may concern that, in fact, they are
part of the bits of one of the factors of n. The scheme is simple and intuitive,
and makes use of polynomial reductions and zero-knowledge proofs, based on
the difficulty of factorization hypothesis. It is easy to verify that the proposed
methods can be adapted to employ other classical problems that are notedly
hard, such as the discrete logarithm.

Given a positive integer n which is the product of two prime numbers p
and q, we want to show that a given sequence of bits k corresponds to the
most significant bits (or prefix) of p, without revealing any of the factors. The
protocol is based, essentially, in the application of zero-knowledge schemes
and polynomial transformations between variants of the integer factorization
problem and variants of the boolean satisfiability problem.
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4.1.1 Reducing EQUICOMPOSITE to SAT

Initially, we show the problem to determine if a number is composite can be
easily reduced to the problem of determining if a logical expression is sat-
isfiable, a problem well known as SAT [37]. More precisely, we consider the
variant EQUICOMPOSITE of the factorization problem, where it is possible
to determine if an integer n can be written as a product of two factors, each
one with at most dlog2(n)/2e bits.

EQUICOMPOSITE
Input: binary number n, with dlog2(n)e bits.
Output: YES, if n is the product of two numbers with bit size up to dlog2(n)/2e;

NO, otherwise.

To deal with the EQUICOMPOSITE problem using zero-knowledge proofs,
we will study the implementation of variants of the multiplication operation
using combinational circuits, or, equivalently, using logical expressions involv-
ing the bits of the operands.

Product of integers as a logical function

It is known that the product operation of two binary numbers can be described
as a combinational circuit, being each digit of the result a logical expression on
the digits of the operands. For the sake of completeness, a brief review about
the theory behind it is given.

Adding bits. It is easy to implement a combinational circuit that receives
as input two bits A and B (the operands) and a third bit Ci (the “carry”,
defined in the previous stage), returning as output (i) the bit S resulting from
the sum of the three input bits, and (ii) a new “carry” bit Co (Figure 3).

Fig. 3 Representation of a 1-bit full adder.

Observe that both bits S and Co can be described by logical expressions
applied over the bits A, B and Ci:

– S = (A⊕B)⊕ Ci
– Co = (A ·B) + (Ci · (A⊕B))

Naturally, the XOR (“exclusive or”, denoted by ⊕) may be replaced by oper-
ations OR (+) and AND (·), according to the formula A⊕B = ĀB +AB̄.

Chained full adders. To do the sum of binary numbers with more than
one bit, we need to chain full adders to one another, sending the output carry
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bit from one stage to the input of the next stage (Figure 4). One more time,

Fig. 4 Representation of a 4-bits adder.

each one of the output bits can be described as a logical expression applied
over the input bits.

Multiplying by a power of two. The multiplication by two, in binary,
can be performed as a simple left shit, adding a 0 bit as the least significant
output digit. We write the left shift of i bits (multiplication by 2i) applied to
a binary number B as B << i.

Obtaining the product of two binary numbers. In a simplified way,
the multiplication operation over binaries can be understood as a sequence of
additions and multiplications by two. For instance, to multiply A = A3A2A1A0

by B = B3B2B1B0, we start with the rightmost bit of one of the operands,
say, A. If the bit A0 is 1, we add the value of the other operand, B, to the
result C (initially zero); if the bit A0 is 0, no value is added. For each one
of the consecutive bits Ai of A, we perform a left shift of size i on B (i.e.,
we multiply B by 2i) and we add it to the result if and only if Ai = 1. The
result, written as a logical expression, is equivalent to C = B ∧ A0 + (B <<
1) ∧A1 + (B << 2) ∧A2 + (B << 3) ∧A3 (Figure 5).

Fig. 5 Representation of a k-bit multiplier.

Building a single output. Knowing how to describe the product of two
binary numbers in the form of a combinational circuit makes it is easy to adapt
it to a modified circuit that has a single output bit whose value is 1 if and
only if a certain number n is equicomposite. To accomplish that, we need to
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add NOT ports to each output of the multiplier circuit related to one bit of n
that must be 0, and connect all the outputs to a single AND port.

Fig. 6 UNI-MULT: fixing the output bits with a final AND port

Formally, a circuit UNI-MULT(d, n), where d is an integer and n is a binary
number, is built as shown in Figure 6, with a multiplier circuit of two binary
numbers of d bits, with a NOT port in each output of the multiplier, related to
one bit 0 of n, and with an AND port connecting all the 2d outputs (inverted
or not). Theorem 1, whose proof is quite simple, reads as follows.

Theorem 1 The circuit UNI-MULT(d, n) returns the bit 1 if and only if the
binary number n may be written as a product of two binary numbers of up to
d bits.

4.1.2 The PREFACTOR problem

Now, we consider the problem of determining if a number may be written as
a product of two other numbers, and one of them is a set of bits whose val-
ues have been previously fixed. More precisely, consider the following decision
problem, which we call PREFACTOR.

PREFACTOR
Input: binary numbers n and k.
Sada: YES, if n is equicomposite and has a factor whose prefix is k;

NO, otherwise.

Knowing how to reduce EQUICOMPOSITE to SAT, it becomes simple
to understand how to reduce the PREFACTOR problem to SAT. Hence, our
goal is to determine whether a number is the product of two other numbers,
and one of them starts with a predetermined set of bits. Our strategy is to
build a circuit that is similar to the one in Figure 6, but with some of the
bits shortcircuited directly into the last stage of the circuit, which receives an
additional AND port as illustrated in Figure 7.
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Fig. 7 PRE-MULT: fixing the first four bits of A in “1100”

Formally, a circuit PRE-MULT(d, n, k), where d is integer and n and k
are binary numbers, is built as shown in Figure 7. Initially, we have a circuit
UNI-MULT(d, n). For each input bit of the circuit UNI-MULT(d, n) related
with a bit of k, we derive it and connect it to a NOT port if such bit is 0 in
k. The derivations are all connected to an AND port, as well as to the output
bit of the circuit UNI-MULT(d, n). The Theorem 2 wraps up the idea of the
PRE-MULT circuit.

Theorem 2 The circuit PRE-MULT(d, n, k) returns a bit 1 if and only if the
binary number n may be written as a product of two binary numbers up to d
bits, one of them having k as its prefix.

4.1.3 Converting to the conjunctive normal form

The reader will observe, again, that the output of the circuit PRE-MULT(d, n, k)
is a logical function on the input bits. However, in order to use the framework
of complexity theory and its polynomial reductions, it is necessary to have a
logical expression in the conjunctive normal form. Fortunately, the transfor-
mations of Tseitin [39] allows us to build, from any logical expression σ, a
new logical expression σ′ whose size is linear in the size of σ. Moreover, the
transformation is executed in linear time in the size of σ.

4.1.4 Using zero-knowledge proofs

Knowing how to reduce the problem PREFACTOR to SAT, we can simply re-
cur to zero-knowledge proofs with polynomial reductions. We can, for example,
reduce a SAT instance to a 3-COLORING instance in polynomial time [25],
and then use a classical scheme of zero-knowledge proof for this last prob-
lem [20].
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4.2 Fingerprint verification

Consider a fingerprint in a computer program codified as a subgraph of its
control-flow graph. For an attacker who is not familiar with the subgraph
location within the control-flow graph of the program, the task of removing
the fingerprint is quite difficult, even if the attacker knows how the subgraph
is generated. This happens because of the hardness of the isomorphism of
subgraphs Graph Theory classic problem. However, once the seller exhibits it,
revealing its location, the fingerprint removal becomes easy.

To demonstrate the authorship/ownership of the digital artifact based on
the algorithm described in Section 4.1, we will use the following strategy.
First, we will codify an information regarding authorship/ownership in a bi-
nary number k. We select two prime numbers p and q, and one of them has
exactly k as the most significant bits (prefix), and we compute the product n
of the numbers p and q. The resulting product will be embedded within the
digital artifact, appearing in the form of a substring, i.e., a subsequence of bits
(more precisely, appearing as a substring of the bit sequence obtained from the
digital artifact after the execution of the extractor algorithm). The motivation
for this strategy is the fact that we can show k without being necessary to
reveal the location of n.

Now, we will consider a slight variation of the extractor algorithm, which
we call pre-extractor. This algorithm, instead of returning exactly the finger-
print (previously embedded by the embedder algorithm), returns a sequence of
bits—possibly a long one—that contains the fingerprint as a substring. More
precisely, the substring will be, as we have seen, the product of two prime
numbers, one of them having the fingerprint as a prefix.

4.2.1 The problem SUBSTRING-PREFACTOR

Consider the following decision problem.

SUBSTRING-PREFACTOR
Input: binary numbers d and k, and an integer N .
Output: YES, if there is a substring n of d, with N bits, such that n is
equicomposite and one of its factors has k as prefix;

NO, otherwise.

It is easy to see the problem SUBSTRING-PREFATOR can also be reduced
to SAT. In fact, we need to build a circuit PRE-MULT (similar to the circuit
built in the PREFACTOR problem) for each substring of size N , and to apply
an OR port to the outputs of each one of the bitsize(d)−N + 1 circuits.

4.2.2 Generating the fingerprint

The generation of the fingerprint follows. Given an information m to be em-
bedded, we need to generate two random prime number p and q of the same
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bit size, such that m is the prefix of p, and compute the product n = p · q,
the sequence of bits that will be embedded in the digital artifact. The genera-
tion of q may follow the traditional methods for picking random numbers and
testing primality until one gets a prime number. The generation of p follows a
slightly modified approach: a random number is generated and concatenated
to the right of m, only then to test primality, repeating the process a prime
number ensues.

4.2.3 Embedding the fingerprint

The process of embedding the fingerprint aims at modifying the digital ar-
tifact, making the sequence of bits n = p · q appears as a substring of the
string retrieved by the extractor algorithm. In practice, the exact embedding
process—and the extraction process—depend of the digital artifact type. In
case of a software, one could use a watermarking scheme based on the modi-
fication of the control flow graph [9].

4.2.4 Verifying the fingerprint

The fingerprint verification comprises the following steps:

1. Extraction of the sequence of bits embedded in the digital artifact—such
sequence may be very long, but it contains n = p · q as a substring.

2. Transformation of the generated sequence into an instance of SAT, and
then to an instance of 3-COLORING.

3. Use of the zero-knowledge scheme to demonstrate that the graph obtained
in the previous step is 3-colorable.

The extraction of the sequence of bits which we refer to in the first step
can be done by specific algorithms, which must be defined for each field of
application and their corresponding digital artifacts. The transformation to an
instance of SAT is attained precisely by the algorithm described in Section 4.1,
while the polynomial reduction from SAT to 3-COLORING is well known [25].
An interactive proof scheme of zero-knowledge for 3-COLORING is described
on [20] and can be used in the last stage to exhibit the fingerprint without
revealing n or any of its factors.

5 Conclusions

In the present work, we describe a protocol which increases the use of finger-
printing tools in dispute scenarios related to intellectual property. The pro-
posed protocol assumes the existence of watermarking schemes that meet the
requirements of stealth, resilience and verifiability. We also describe a secure
way for verifying the fingerprint without exposing its contents or location.
This is achieved via partial transfer of knowledge, which is an application of
Zero-Knowledge Proofs.
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