
Fair fingerprinting protocol for attesting
software misuses

Raphael C. S. Machado Davidson R. Boccardo
Instituto Nacional de Metrologia, Qualidade e Tecnologia

Duque de Caxias, RJ – Brazil
rcmachado@inmetro.gov.br, drboccardo@inmetro.gov.br

Vinı́cius G. Pereira de Sá Jayme L. Szwarcfiter
Universidade Federal do Rio de Janeiro

Rio de Janeiro, RJ – Brazil
vigusmao@dcc.ufrj.br, jayme@nce.ufrj.br

Abstract—Digital watermarks embed information into a host
artifact in such a way that the functionalities of the artifact
remain unchanged. Allowing for the timely retrieval of author-
ship/ownership information, and ideally hard to be removed,
watermarks discourage piracy and have thus been regarded as
important tools to protect the intellectual property. A watermark
aimed at uniquely identifying an artifact is referred to as a
fingerprint. After presenting a formal definition of digital water-
marks, we introduce an unbiased fingerprinting protocol—based
on oblivious transfer—that lends no advantage to the prosecuting
party in a dispute around intellectual property breach.

Keywords—software fingerprinting; oblivious transfer

I. INTRODUCTION

Consider the following scenario. Alice wishes to sell a
computer program to Bob, but suspects that Bob may distribute
the program to others. Alice therefore endows the program
with the following sentence: “This software is meant to be
used exclusively by Bob and cannot be redistributed.” Alice
cautiously employs digital watermarking techniques to embed
the sentence in a way that avoids it being found and removed
by a malicious Bob.

A few months later, Alice hears that Eva is using an
excellent computer program she downloaded from the Internet.
The program looks suspiciously familiar to Alice, who finds
out after due analysis that it happens to be a copy of that exact
version she had sold to Bob. Alice goes to court. During the
trial, Alice provides the judge with the selling contracts of her
software and the version downloaded by Eva, in which she
is able to pinpoint the encoded sentence that explicitly points
to Bob. When interrogated, the defendant Bob denies having
criminally shared it on the Internet. Moreover, he argues that
Alice, being the author of the program, could have inserted
the incriminating sentence into any copy of the program she
wished and might as well have distributed the program herself.
The judge grants Bob the benefit of the doubt and dismisses
the case for lack of evidence.

Watermarking techniques allow for the embedding of in-
formation in a digital artifact in such a way that the artifact’s
functionalities are not impacted. Furthermore, the removal of
a digital watermark must be a difficult task for an attacker,
so that an attempt to do so will likely lead to deterioration
or destruction of the host artifact. Much research is under
way in distinct application fields (see Section II) aiming at
the protection of artistic, industrial and intellectual property.
However, the resilience of watermarks against attacks still

lacks formalization. Moreover, the applicability of watermarks
in the chain of security protocols still demands further study,
since the existing watermarking schemes do not allow for the
attribution of guilt in cases of misuse of the artifact. As we
have seen, suspicion may fall upon both sides of the dispute.

In the context of intellectual property protection, a water-
mark that provides unique identification of a digital artifact is
termed fingerprint, and the artifact that carries it is said to be
traceable. A limitation of the existing fingerprinting algorithms
is therefore their inherent asymmetry (bias), whereby the side
responsible for embedding the fingerprint (who may perfectly
well be the ill-intentioned side) shall be in advantage by having
access to different artifact versions, both traceable (with an
embedded fingerprint) and untraceable (with no fingerprint).
In a trial for misuse, the embedder would obviously pick the
version that would not incriminate her. This problem could be
solved by having a Trusted Third Party (TTP) responsible for
embedding the fingerprint. However, when only two parties
take part in the protocol, the one in charge of the embedding
process will eventually have an unfair advantage over the other
party in a dispute.

In the present paper, we describe a protocol involving two
participants: the seller, henceforth called Alice, and the buyer,
henceforth called Bob. The protocol will be built in a way
that Alice sends to Bob a traceable artifact whose fingerprint
Alice herself will not be able to know a posteriori. Such
property is achieved by making use of the oblivious transfer
protocol [1] with some appropriate modifications. Under such
a protocol, it will be possible to determine—with an arbitrarily
low probability of error—the real responsible for the misuse
of the artifact. We also describe a verification mechanism that
does not require the disclosure of the fingerprint contents or
location even to the arbitrator.

The paper is structured as follows. In Section II, we
describe known approaches to support the protection of dig-
ital intellectual property. In Section III, we present formal
concepts associated to watermarks. Based on those concepts,
we introduce our fingerprinting protocol in Section IV. In
Section V, we describe a verification scheme, based on the
partial transfer of knowledge, which keeps the fingerprint
contents and location safe in the case of a trial. Section VI
contains our concluding remarks.

II. RELATED WORKS

In the literature, there are plenty of works tackling the
embedding of digital watermarks in artifacts such as im-
ages [2], audio and video [2], [3], text documents [4], [5],
and computer program [6], [7]. However, it is in the field of
software protection that the development of fruitful approaches
has been most markedly noted.

Methods for protection of intellectual property of software
range from legal protection to technological protection. From
the standpoint of legal protection, government and industry
seek regulatory mechanisms related to industry and trade,
such as patent laws, copyrights and trade secret [8]. From the
standpoint of technological protection, several techniques have
been developed to avoid reverse engineering, tampering and
illegal distribution of software [9].

Obfuscation techniques aim at making reverse engineering
a difficult task. They are based on semantics-preserving trans-
formations which manage to considerably worsen the results
provided by standard software analysis tools [9]. Tamper-
proofing techniques aim at detecting unauthorised software
modifications and responding to them. Detection methods are
based on code introspection, state inspection and/or envi-
ronment verification. The responding methods vary, but the
most common ones are program termination, performance
degradation or program restore [9].

Software watermarking techniques aim at discouraging
piracy by detecting and tracing illegal distributions. They can
be classified based on their embedder and extractor algorithms,
and on their static or dynamic nature. Static watermarks lie
within the code or data segments of a program, whereas
dynamic watermarks are built in the program states during
its execution. Embedding algorithms are typically based on
code substitution, code reordering, register allocation, control
flow graphs, abstraction interpretation and opaque predicates.
Surveys on state-of-the-art watermarking techniques can be
found in [6], [7].

The focus of this work is to support dispute resolving
by means of an intelligent watermark usage. The text is
therefore agnostic to embedding and extracting algorithms’
particularities. In a typical dispute resolving scenario, two
participants claim authorship (or legitimate ownership) of a
digital artifact. The goal of the proposed protocol is to allow
that a TTP (a judge, an arbitrator) solves the dispute by
comparing the proofs presented by the participants. There
are numerous works that deal with this problem for audio,
video and image artifacts [10], [11]. We deal with the dispute
resolving problem concerning software. To our knowledge, our
study is the first, in the context of software protection, which
deals with the fairness between parties, that is, which is able to
dismiss arguments about the seller’s (ill-)intentions. Moreover,
it is to our knowledge the first to provide a verification scheme
in which the arbitrator does not need to have access to the
fingerprint itself. This allows for, say, a partially trustworthy
arbitrator.

III. BACKGROUND

A. Watermarks

The basic properties of a digital watermark (or fingerprint,
when the goal is to uniquely identify a software copy) are:

• stealth, which refers to how undistinguishable a trace-
able artifact becomes from an untraceable one;

• resilience, which refers to how difficult it is for an
attacker to remove or tamper with the watermark
without compromising the artifact’s functionalities;
and

• verifiability, which refers to the ability to unques-
tionably identify the artifact (or to attest its autho-
ship/ownership) when exhibited to a TTP.

We say watermarks embed content information into a dig-
ital artifact—the host—in such a way that the final artifact—
the product—is semantically equivalent to the host, i.e., the
watermark does not alter the functionalities of the program.

Essentially, a watermarking scheme is defined by two
algorithms. The first one, called the embedder algorithm, takes
as input a digital artifact u and an information m to be
embedded, and outputs a product ũ, semantically equivalent to
u, but containing m. The second one, called the extractor, takes
as input the watermarked artifact ũ and outputs the embedded
information m.

Formally, given a universe of digital artifacts U (all pos-
sible hosts) endowed with a definition of equivalence classes,
and a set M of content information, a watermarking scheme
is a tuple of functions (f, g, r) related in the following way:

The embedder function f : U×M×A→ U takes as input a
digital artifact u ∈ U , an information m ∈M to be embedded
and an auxiliar input a ∈ A (which can be regarded as an
embedding key), and outputs an artifact ũ ∈ U semantically
equivalent to u.

The extractor function g : U × B → M , takes as input a
digital artifact ũ ∈ U and an auxiliar input b ∈ B (which
can be regarded as an extraction key), outputting content
information m ∈M .

The bijective function r : A → B maps embedding to
extraction keys, that is, it takes as input an element a ∈ A
and outputs an element r(a) ∈ B, in such way that, for any
u ∈ U , m ∈M , a ∈ A, if ũ = f(u,m, a) so m = g(ũ, r(a)).

The size of the sets A and B will determine the effort
necessary for a brute-force attack to succeed in recovering the
embedded information. The addition of such auxiliary inputs—
typically associated to the watermark location—allows for
more than one watermark in the same artifact. This enables, for
instance, the use of temporal protocols [12] in the watermark.
This may increase its resilience against addition attacks, in
which an adversary embeds additional watermarks to confound
the extractor algorithms.

Semantic equivalence and immersibility: A key concept for
the development of embedding information techniques within
digital artifacts is the concept of “semantic equivalence”.
Watermarking algorithms must be able to modify the host

artifact, generating a product artifact with the same meaning
or utility, but containing the intended information. In order to
say “same meaning or utility”, it is necessary to define the
“semantics” related to the host artifact. Such semantics should
be preserved after the embedding of content information.

Consider the set U of artifacts of a certain kind in an
application field. Consider a partition (U1, .., Ui, ...) of U such
that the artifacts of each Ui have the same “meaning” or
“utility” for that application field. Thus, we say the artifacts
of each Ui are semantically equivalent.

Examples of semantically equivalent artifacts may be given
for distinct application fields. In the field of the “linguistics”,
for instance, we can say two texts are semantically equivalent
if they are identical except for some swaps between the words
“though” and “although”. In the application field of computer
programs it is possible to generate two semantically equiv-
alent programs including, for example, dummy codes1. More
sophisticated methods include diversifying computer programs
by obfuscations means [13]. The definition of semantically
equivalent classes depends, mainly, of the application field.

Resilience: A watermarking scheme should allow content
information to be embedded in a way that is resilient to attacks.
Simply put, a watermark would be optimally resilient if any
efficient algorithm which removes or damages the watermark
ends up producing, with high probability, an artifact which
belongs to a distinct class of semantic equivalence.

Formally, let X be a polynomial-time algorithm that
somehow removes watermarks, i.e., a procedure that takes
as input a watermarked artifact ũ and outputs an artifact u′
without the watermark (or with a corrupted watermark). A
watermarking scheme (f, g, r) should ideally guarantee that
the probability that u′ and u belong to the same class of
semantically equivalent artifacts is negligible.

Although no watermarking schemes are known which
are totally resilient according to the above definitions, we
henceforth assume their hypothetical existence.

Verifiability: In the classical watermarking examples in real
artifacts, the watermark is visible and verifiable for anyone
having access to the watermarked artifact. The difficulty to
remove the watermark is based on the physical process of the
watermark embedding. For instance, consider the difficulty to
remove the low relief watermark in a printed document.

Watermarks in digital artifacts brought the need of an addi-
tional property, called verifiability, i.e., a way of “exhibiting”
a watermark while still preserving its contents/location secret.
Owing to its digital nature, a naively designed watermark may
be easily removed if an adversary knows its contents/location.

Verifiability is one of the challenges for state-of-the-art wa-
termarking schemes. In the most recent watermarking schemes,
the simple exhibition of the watermark in a digital artifact
makes its removal a trivial task for an attacker. However,
for the fingerprinting application considered in the present
work, we implement a scheme that avoids the disclosure of
the watermark contents/location.

1A dummy code consists entirely of instructions that do not alter the program
semantics.

B. Oblivious transfer

Suppose Alice sells digital books and Bob wants to buy
a book from Alice. However, Bob would like to keep secret
about the item he is interested in, either for privacy reasons,
or to avoid receiving unwanted advertising in the future, or for
any other reason. The cryptography protocol called oblivious
transfer makes it possible to transfer the electronic content
from Alice to Bob in such way that Alice will have no idea
about which content has interested Bob.

More formally, assume Alice defines m1, ...,mk messages
and Bob wants access to the i-th message from Alice. Essen-
tially, Alice transfers all the messages m1, ...,mk, each one
encrypted with a distinct symmetric key derived from a key
chosen by Bob so that only the i-th encrypted message can be
decrypted by Bob. Further details of this protocol are described
in Section IV.

Several oblivious transfer models can be found in the
literature, but they are in a sense equivalent [14], [15], [16],
[17]. The oblivious transfer concept plays an important role in
building other more complex protocols [18]. In Section IV, we
modify it slightly to build a fingerprinting protocol for digital
artifacts.

IV. PROPOSED FINGERPRINTING PROTOCOL

As discussed along the paper, the biggest difficulty in
conceiving a fair fingerprinting protocol without recurring to a
TTP is due to the fact that the party responsible for inserting
the watermark will necessarily have access to both versions of
the digital artifact: the traceable and the untraceable one. If this
party is ill-intentioned—for example, intending to distribute
copies of the digital artifact—she may choose to distribute the
version that does not incriminate her; or, equivalently, which
does incriminate someone else.

The protocol we propose consists in a modification of
the oblivious transfer protocol. Essentially, we employ the
oblivious transfer protocol 1-of-n with sufficiently large n. In
this protocol, one of n possible messages is transmitted, but
Alice (the seller) is unaware of which one was transmitted.
Thus, although the seller has been responsible for inserting
the watermark, she does not know which version was actually
received by the buyer. If, later on, Alice finds any reason to
distribute (maliciously) any version of the software, then with
high probability she will distribute a version that was not the
same one sent to Bob (the buyer). And if she distributes all
versions, then it will become quite clear for a judge that the
seller herself is to blame. It takes several adjustments to the
protocol to prevent non-repudiation attacks. We describe next
such adjustments, starting from a basic fingerprinting protocol
based on oblivious transfer (Section IV-A) until we get to a
more robust version (Section IV-C).

A. Initial fingerprinting protocol based on oblivious transfer

A naive version of the fair fingerprinting protocol we
intend to introduce makes use of the classic version of the
oblivious transfer protocol, which allows the transference of
an element from a set without the transmitter knowing which
one was transmitted. We start with this basic version to better
understand each proposed modification, and we evolve to the

final protocol step by step after considering several possible
attack models.

Basic fingerprinting protocol

1) Alice creates α semantically equivalent variations
n1, ..., nα of a digital artifact.

2) Alice creates α pairs of public/private keys
Pr1, Pu1, ..., P rα, Puα, and sends the public keys
Pu1, ..., Puα to Bob.

3) Bob creates a random symmetric key k and encrypts it
with one public key Pui among its α public keys of Alice,
resulting in EPui(k). Bob sends EPui(k) to Alice.

4) Alice decrypts EPui(k) with each private key Prj among
its α private keys, obtaining DPrj (EPui(k)), with j =
1, ..., α.

5) Alice encrypts each artifact nj among its α variations with
the key DPrj (EPui(k)), obtaining EDPrj

(EPui
(k))(nj),

and sends to Bob each EDPrj
(EPui

(k))(nj).
6) Bob decrypts each EDPrj

(EPui
(k))(nj), obtaining

Dk(EDPrj
(EPui

(k))(nj)) and only when i = j will he
have a consistent digital artifact.

The key for understanding the above protocol is to note
that, in step 4, Alice will obtain α “possible keys”, only one
of which will be Bob’s actual key k. It is however impossible
for Alice to know which key that is.

To identify responsibilities for improper use of digital
artifacts, the arbitrator will need to have access to all the
information generated during the protocol steps: the versions
of the original digital artifact, the public and private keys.
The verification protocol, to be executed by the arbitrator, for
identifying a fingerprinted version f(ñ) is the following:

Basic verification protocol

1) Verify if the fingerprint f(ñ) is the same as in any of the
traceable artifacts n1, ..., nα.

Observe that is still necessary to guarantee that Alice, in
fact, generated α artifacts with distinct fingerprints, and to have
mechanisms to ensure that Bob, in fact, participated of the
protocol execution.

B. Fingerprinting protocol with guarantee of distinct finger-
prints

The verification protocol above allows a simple attack by
Alice. Alice can generate α variants of the digital artifact
containing all the same fingerprint. This allows her to distribute
any of the artifacts and blaming Bob. To avoid this attack, the
arbitrator must verify that Alice, in fact, generated α artifacts
with distinct fingerprints. A recent work about the generation
and verification of distinct fingerprints based on a randomized
graph-based scheme can be found in [19].

Verification protocol with a naive test of distinct fingerprints

1) Verify if the fingerprints f(n1), ..., f(fα) are mutually
distinct.

2) Verify if the fingerprint f(ñ) is the same as in any of the
artifacts n1, ..., nα.

The modification above seems to be enough to guarantee
that Alice can not distribute one of the artifacts n1, ..., nα
because, with high probability, it will be a distinct artifact
from the one obtained by Bob. However, there is no guarantee
that the artifacts shown to the arbitrator are, in fact, the
artifacts involved in the protocol. At this point, the distinction
between the aim of the proposed protocol and that of the
classic oblivious transfer protocol should be clear. In the basic
protocol, there is only an interest in transferring an element
from a certain set from Alice to Bob, without Alice knowing
which the transferred element was. In this modified version
of the fingerprinting protocol, it is fundamental that it can
be demonstrated later on that all the elements were involved
during the execution of the protocol, that is, the arbitrator
should know which elements could have been transferred to
Bob. This necessity requires some more modifications.

Our protocol will now encompass actions to make sure that
Alice indeed generated α variants of the artifact with different
fingerprints. To guarantee that, the modified protocol includes
sending cryptographic hashes of the artifacts by Alice to Bob.

Fingerprinting protocol with guarantee of distinct fingerprints

1) Alice creates α semantically equivalent variations
n1, ..., nα of a digital artifact.

2) Alice generates cryptographic hashes
h(n1), ..., h(nα), signs them and sends to Bob
(h(n1), ..., h(nα), sA(h(n1)|...|h(nα)).

3) Bob verifies the signature of the hashes signed by Al-
ice and returns the cryptographic hashes signed by him:
(h(n1), ..., h(nα), sB(h(n1)|...|h(nα)).

4) Alice verifies the signature of the hashes sent by Bob, cre-
ates α pairs of public/private keys Pr1, Pu1, ..., P rα, Puα,
and sends the public keys Pu1, ..., Puα to Bob.

5) Bob creates a random symmetric key k and encrypts it
with one public key Pui among its α public keys of Alice,
resulting in EPui(k). Bob sends EPui(k) to Alice.

6) Alice decrypts EPui(k) with each private key Prj among
its α private keys, obtaining DPrj (EPui(k)), with j =
1, ..., α.

7) Alice encrypts each artifact nj among its α variations with
the key DPrj (EPui(k)), obtaining EDPrj

(EPui
(k))(nj),

and sends to Bob each EDPrj
(EPui

(k))(nj).
8) Bob decrypts each EDPrj

(EPui
(k))(nj), obtaining

Dk(EDPrj
(EPui

(k))(nj)) and only when i = j he will
have a consistent digital artifact.

The inclusion of step 2 makes it possible to check the
set of artifacts that Alice generated during the execution
of the protocol. Naturally, the arbitrator will need to have
access to the message (h(n1), ..., h(nα), sA(h(n1)|...|h(nα))
to execute the verification algorithm. Step 3 indicates that

Bob had knowledge of the cryptographic hashes involved in
the protocol. The verification protocol to be executed by the
arbitrator is the following.

Verification protocol to guarantee distinct fingerprints

1) Verify if the signature sA(h(n1)|...|h(nα) is valid and if
each artifact ni has the correct cryptographic hash h(ni).

2) Verify if the signature sB(h(n1)|...|h(nα)) is valid.
3) Verify if the fingerprints f(n1), ..., f(fα) are mutually

distinct.
4) Verify if the fingerprint f(ñ) is the same as in any of the

artifacts n1, ..., nα.

The step 1 allows the arbitrator to certify the set of artifacts
involved during the execution of the protocol, resisting against
the identical fingerprints attack. The step 2 ensures that Bob
was involved during the execution of the protocol.

C. Resistant protocol against non-repudiation attacks

Another challenge for the construction of the proposed
fingerprinting protocol consists in identifying the version sent
to Bob. Without it, it is impossible to the arbitrator imputing
blame onto Bob for a possible artifact misuse. Obviously, this
identification must occur a posteriori, i.e., upon the arbitrator’s
request. However, the inputs for this identification must still be
provided by Alice. In practice, the proposed solution consists
in Bob sending to Alice a cryptographic hash of his secret key,
together with the digital signature. This modification can be
seen in step 6.

Resistant protocol against non-repudiation attacks

1) Alice creates α semantically equivalent variations
n1, ..., nα of a digital artifact.

2) Alice generates cryptographic hashes
h(n1), ..., h(nα), signs and sends them to Bob
(h(n1), ..., h(nα), sA(h(n1)|...|h(nα)).

3) Bob verifies the signature of the hashes signed by Al-
ice and returns the cryptographic hashes signed by him:
(h(n1), ..., h(nα), sB(h(n1)|...|h(nα)).

4) Alice verifies the signature of the hashes signed
by Bob, creates α pairs of public/private keys
Pr1, Pu1, ..., P rα, Puα, and sends the public keys
Pu1, ..., Puα to Bob.

5) Bob creates a random symmetric key k and encrypts it
with one public key Pui among its α public keys of Alice,
resulting in EPui(k). Bob sends EPui(k) to Alice.

6) Bob sends to Alice a cryptographic hash h(k) of k, to-
gether with the digital signatures of h(k) and EPui(k):
(h(k), sB(h(k)), sB(EPui(k)))

7) Alice verifies the signature of the objects signed by Bob and
decrypts EPui(k) with each private key Prj among its α
private keys, obtaining DPrj (EPui(k)), with j = 1, ..., α.

8) Alice encrypts each artifact nj among its α variations with
the key DPrj (EPui(k)), obtaining EDPrj

(EPui
(k))(nj),

and sends to Bob each EDPrj
(EPui

(k))(nj).
9) Bob decrypts each EDPrj

(EPui
(k))(nj), obtaining

Dk(EDPrj
(EPui

(k))(nj)) and only when i = j he will
have a consistent digital artifact.

To execute the new verification algorithm, the arbitrator
will need to have access to k, given by Bob, as well as to h(k),
sB(h(k))), EPui(k) e sB(EPui(k)). Access to all α public
keys and α private keys generated by Alice is also necessary.

Verification protocol with identification of Bob’s key

1) Verify if the signature sA(h(n1)|...|h(nα) is valid and if
each artifact ni has the correct cryptographic hash h(ni).

2) Verify if the signature sB(h(n1)|...|h(nα)) is valid.
3) Verify if the fingerprints f(n1), ..., f(fα) are mutually

distinct.
4) Verify if the fingerprint f(ñ) is the same as in any of the

artifacts n1, ..., nα
5) Verify if the signatures sB(h(k)) over h(k) and

sB(EPui(k)) over EPui(k) are valid and if the key k given
by Bob has, in fact, the cryptographic hash h(k).

The Step 5 ensures that Bob was indeed given the same
private key encrypted with one of Alice’s public keys during
the execution of the protocol. With the informations above, the
arbitrator is able to identify the version ni obtained by Bob—
by testing each of Alice’s private keys—and, finally, to verify
whether the fingerprint f(ni)) is the same as the fingerprint
f(ñ). Figure 1 wraps up the proposed fingerprinting protocol.

V. SECURE VERIFICATION PROTOCOL FOR SOFTWARE
FINGERPRINTING

In this section, we develop a protocol that allows for
fingerprint verification during a trial without revealing its
contents or location, not even to the arbitrator. The simple
exhibition of its contents or location makes it easier for an
adversary/attacker to tamper with it. The protocol development
starts from a scheme of partial transfer of knowledge, and
afterwards we describe its application in the scenario of secure
verification of fingerprints. The main advantage of the use of
the partial transfer of knowledge scheme is the possibility to
reveal information about authorship/ownership embed exactly
in the bits to be shown, without making it any easier for an
attacker to infer the content or location of the fingerprint.
Since the transfer is partial, an attacker willing to remove
the fingerprint will not have enough information to locate it
within the artifact, so its removal will remain as hard after the
verification as it used to be before it.

A. Partial transfer of knowledge scheme

In Kilian’s doctoral thesis [20], the following problem is
described. Bob wants to factor a number n with 500 bits which
is known to be the product of five prime numbers of 100 bits.
Alice knows one of the factors, denoted q, and is willing to
sell 25 of its bits to Bob. Kilian proposes a method that allows
Bob to make sure that Alice indeed knows one of the factors of
n, and moreover allows Bob to make sure that each individual
bit of q has been correctly informed by Alice. The proposed
scheme not only allows the disclosure of only some bits of q
but also uses schemes of commitment of individual bits of q to
ensure that those bits will not be disclosed without the consent
of Alice. Finally, it allows for the use of oblivious transfer in
such a way that Alice is unaware of the bits that get actually
disclosed to Bob.

Fig. 1. The proposed fingerprinting protocol.

Next, we present a scheme for a simplified scenario of
disclosure of some bits of q, allowing us to observe essential
aspects of the protocol, which we have referred to as “partial
transfer of knowledge”. In the proposed scenario, Alice is not
financially interested in the bits to be transferred: Alice is
willing to reveal some bits of q to anyone wanting to know
them. On the other hand, Alice only agrees to reveal a certain
subset of bits of q—by convention, we assume that Alice
always reveal the most significant bits of q, although her choice
is arbitrary. The fact that such set is predetermined makes it
unnecessary to use oblivious transfer here. In such a scenario,
Alice is able to show the most significant bits of q, proving
to whom it may concern that, in fact, they are part of the bits
of one of the factors of n. The scheme is simple and intuitive,
and makes use of polynomial reductions and zero-knowledge
proofs, based on the difficulty of factorization hypothesis. It
is easy to verify that the proposed methods can be adapted to

employ other classical problems that are notedly hard, such as
the discrete logarithm.

Given a positive integer n which is the product of two
prime numbers p and q, we want to show that a given sequence
of bits k corresponds to the most significant bits (or prefix) of
p, without revealing any of the factors. The protocol is based,
essentially, in the application of zero-knowledge schemes and
polynomial transformations between variants of the integer
factorization problem and variants of the boolean satisfiability
problem.

1) Reducing EQUICOMPOSITE to SAT: Initially, we
show the problem to determine if a number is composite can
be easily reduced to the problem of determining if a logical
expression is satisfiable, a problem well known as SAT [21].
More precisely, we consider the variant EQUICOMPOSITE
of the factorization problem, where it is possible to determine

if an integer n can be written as a product of two factors,
each one with at most dlog2(n)/2e bits.

EQUICOMPOSITE
Input: binary number n, with dlog2(n)e bits.
Output: YES, if n is the product of two numbers with bit
size up to dlog2(n)/2e;

NO, otherwise.

To deal with the EQUICOMPOSITE problem using zero-
knowledge proofs, we will study the implementation of vari-
ants of the multiplication operation using combinational cir-
cuits, or, equivalently, using logical expressions involving the
bits of the operands.

Product of integers as a logical function: It is known that
the product operation of two binary numbers can be described
as a combinational circuit, being each digit of the result a
logical expression on the digits of the operands. For the sake
of completeness, a brief review about the theory behind it is
given.

Adding bits. It is easy to implement a combinational
circuit that receives as input two bits A and B (the operands)
and a third bit Ci (the “carry”, defined in the previous stage),
returning as output (i) the bit S resulting from the sum of the
three input bits, and (ii) a new “carry” bit Co (Figure 2).

Fig. 2. A full adder.

Observe that both bits S and Co can be described by logical
expressions applied over the bits A, B and Ci:

• S = (A⊕B)⊕ Ci
• Co = (A ·B) + (Ci · (A⊕B))

Naturally, the XOR (“exclusive or”, denoted by ⊕) may be
replaced by operations OR (+) and AND (·), according to the
formula A⊕B = ĀB +AB̄.

Chained full adders. To do the sum of binary numbers
with more than one bit, we need to chain full adders to one
another, sending the output carry bit from one stage to the
input of the next stage (Figure 3). One more time, each one of
the output bits can be described as a logical expression applied
over the input bits.

Multiplying by a power of two. The multiplication by
two, in binary, can be performed as a simple left shit, adding
a 0 bit as the least significant output digit. We write the left
shift of i bits (multiplication by 2i) applied to a binary number
B as B << i.

Fig. 3. A 4-bits adder.

Obtaining the product of two binary numbers. In a
simplified way, the multiplication operation over binaries can
be understood as a sequence of additions and multiplications
by two. For instance, to multiply A = A3A2A1A0 by
B = B3B2B1B0, we start with the rightmost bit of one of the
operands, say, A. If the bit A0 is 1, we add the value of the
other operand, B, to the result C (initially zero); if the bit A0

is 0, no value is added. For each one of the consecutive bits Ai
of A, we perform a left shift of size i on B (i.e., we multiply
B by 2i) and we add it to the result if and only if Ai = 1.
The result, written as a logical expression, is equivalent to C =
B ∧A0 + (B << 1)∧A1 + (B << 2)∧A2 + (B << 3)∧A3

(Figure 4).

Fig. 4. A multiplier.

Building a single output. Knowing how to describe the
product of two binary numbers in the form of a combinational
circuit makes it is easy to adapt it to a modified circuit that
has a single output bit whose value is 1 if and only if a certain
number n is equicomposite. To accomplish that, we need to
add NOT ports to each output of the multiplier circuit related
to one bit of n that must be 0, and connect all the outputs to
a single AND port.

Formally, a circuit UNI-MULT(d, n), where d is an integer
and n is a binary number, is built as shown in Figure 5, with
a multiplier circuit of two binary numbers of d bits, with a
NOT port in each output of the multiplier, related to one bit
0 of n, and with an AND port connecting all the 2d outputs
(inverted or not). Theorem 1, whose proof is quite simple,
reads as follows.

Theorem 1: The circuit UNI-MULT(d, n) returns the bit 1

Fig. 5. UNI-MULT: fixing the output bits with a final AND port.

if and only if the binary number n may be written as a product
of two binary numbers of up to d bits.

2) The PREFACTOR problem: Now, we consider the
problem of determining if a number may be written as a
product of two other numbers, and one of them is a set of
bits whose values have been previously fixed. More precisely,
consider the following decision problem, which we call
PREFACTOR.

PREFACTOR
Input: binary numbers n and k.
Output: YES, if n is equicomposite and has a factor whose
prefix is k;

NO, otherwise.

Knowing how to reduce EQUICOMPOSITE to SAT, it
becomes simple to understand how to reduce the PREFACTOR
problem to SAT. Hence, our goal is to determine whether a
number is the product of two other numbers, and one of them
starts with a predetermined set of bits. Our strategy is to build
a circuit that is similar to the one in Figure 5, but with some
of the bits shortcircuited directly into the last stage of the
circuit, which receives an additional AND port as illustrated
in Figure 6.

Formally, a circuit PRE-MULT(d, n, k), where d is integer
and n and k are binary numbers, is built as shown in Figure 6.
Initially, we have a circuit UNI-MULT(d, n). For each input
bit of the circuit UNI-MULT(d, n) related with a bit of k, we
derive it and connect it to a NOT port if such bit is 0 in k.
The derivations are all connected to an AND port, as well as to
the output bit of the circuit UNI-MULT(d, n). The Theorem 2
wraps up the idea of the PRE-MULT circuit.

Theorem 2: The circuit PRE-MULT(d, n, k) returns a bit 1
if and only if the binary number n may be written as a product
of two binary numbers up to d bits, one of them having k as
its prefix.

3) Converting to the conjunctive normal form: The reader
will observe, again, that the output of the circuit PRE-
MULT(d, n, k) is a logical function on the input bits. However,
in order to use the framework of complexity theory and

Fig. 6. PRE-MULT: fixing the first four bits of A in “1100”.

its polynomial reductions, it is necessary to have a logical
expression in the conjunctive normal form. Fortunately, the
transformations of Tseitin [22] allows us to build, from any
logical expression σ, a new logical expression σ′ whose size is
linear in the size of σ. Moreover, the transformation is executed
in linear time in the size of σ.

4) Using zero-knowledge proofs: Knowing how to reduce
the problem PREFACTOR to SAT, we can simply recur to
zero-knowledge proofs with polynomial reductions. We can,
for example, reduce a SAT instance to a 3-COLORING in-
stance in polynomial time [23], and then use a classical scheme
of zero-knowledge proof for this last problem [24].

B. Fingerprint verification

Consider a fingerprint in a computer program codified as
a subgraph of its control-flow graph. For an attacker who is
not familiar with the subgraph location within the control-flow
graph of the program, the task of removing the fingerprint is
quite difficult, even if the attacker knows how the subgraph
is generated. This happens because of the hardness of the
isomorphism of subgraphs Graph Theory classic problem.
However, once the seller exhibits it, revealing its location, the
fingerprint removal becomes easy.

To demonstrate the authorship/ownership of the digital
artifact based on the algorithm described in Section V-A,
we will use the following strategy. First, we will codify
an information regarding authorship/ownership in a binary
number k. We select two prime numbers p and q, and one
of them has exactly k as the most significant bits (prefix),
and we compute the product n of the numbers p and q. The
resulting product will be embedded within the digital artifact,
appearing in the form of a substring, i.e., a subsequence of bits
(more precisely, appearing as a substring of the bit sequence
obtained from the digital artifact after the execution of the
extractor algorithm). The motivation for this strategy is the
fact that we can show k without being necessary to reveal the
location of n.

Now, we will consider a slight variation of the extractor
algorithm, which we call pre-extractor. This algorithm, instead
of returning exactly the fingerprint (previously embedded by
the embedder algorithm), returns a sequence of bits—possibly

a long one—that contains the fingerprint as a substring. More
precisely, the substring will be, as we have seen, the product
of two prime numbers, one of them having the fingerprint as
a prefix.

1) The problem SUBSTRING-PREFACTOR: Consider the
following decision problem.

SUBSTRING-PREFACTOR
Input: binary numbers d and k, and an integer N .
Output: YES, if there is a substring n of d, with N bits, such
that n is equicomposite and one of its factors has k as prefix;

NO, otherwise.

It is easy to see the problem SUBSTRING-PREFATOR
can also be reduced to SAT. In fact, we need to build a circuit
PRE-MULT (similar to the circuit built in the PREFACTOR
problem) for each substring of size N , and to apply an OR
port to the outputs of each one of the bitsize(d) − N + 1
circuits.

2) Generating the fingerprint: The generation of the fin-
gerprint follows. Given an information m to be embedded, we
need to generate two random prime number p and q of the same
bit size, such that m is the prefix of p, and compute the product
n = p · q, the sequence of bits that will be embedded in the
digital artifact. The generation of q may follow the traditional
methods for picking random numbers and testing primality
until one gets a prime number. The generation of p follows
a slightly modified approach: a random number is generated
and concatenated to the right of m, only then to test primality,
repeating the process a prime number ensues.

3) Embedding the fingerprint: The process of embedding
the fingerprint aims at modifying the digital artifact, making
the sequence of bits n = p · q appears as a substring of the
string retrieved by the extractor algorithm. In practice, the
exact embedding process—and the extraction process—depend
of the digital artifact type. In case of a text file, for instance,
the process only depends on the coding scheme used to embed
the information in the text. In Section III-A, we describe a
scheme in which the sequence of “though” and “although”
words determine the codified information. In this case, it would
suffice to select a sequence of these words and replace them
appropriately to include the bits constructed by the protocol.
Similar examples could be built for other application fields.

4) Verifying the fingerprint: The fingerprint verification
comprises the following steps:

1) Extraction of the sequence of bits embedded in the
digital artefact—such sequence may be very long, but
it contains n = p · q as a substring.

2) Transformation of the generated sequence into an
instance of SAT, and then to an instance of 3-
COLORING.

3) Use of the zero-knowledge scheme to demonstrate
that the graph obtained in the previous step is 3-
colorable.

The extraction of the sequence of bits which we refer to in
the first step can be done by specific algorithms, which must
be defined for each field of application and their corresponding

digital artifacts. The transformation to an instance of SAT is
attained precisely by the algorithm described in Section V-A,
while the polynomial reduction from SAT to 3-COLORING
is well known [23]. An interactive proof scheme of zero-
knowledge for 3-COLORING is described on [24] and can be
used in the last stage to exhibit the fingerprint without revealing
n or any of its factors.

VI. CONCLUSIONS

We described a fingerprinting protocol which can be appro-
priate in dispute scenarios related to intellectual property. It is
balanced—or fair—in the sense that it assigns no advantage to
either party (the “buyer” or the “seller”). The proposed proto-
col assumes the existence of watermarking schemes that meet
the usual requirements of stealth, resilience and verifiability.We
also describe a secure way for verifying the fingerprint without
exposing its contents or location. This is achieved via partial
transfer of knowledge.

An important observation on the proposed protocol is the
fact that, in a dispute scenario, the arbitrator will have access
to all data transmitted during the execution of the protocol.
That is not necessarily a limitation. First, all cryptographic
keys (secret, private and public) disclosed to the arbitrator
are temporary, used only in one execution of the protocol.
Furthermore, since the artifact has already given rise to a
judicial dispute, it means it has already been improperly
distributed, anyway. Thus, it should not be a problem to
disclose its fingerprint details to another individual, namely
the arbitrator.

In future works, it should be interesting to investigate the
possibility of using zero knowledge proofs to convince the
arbitrator that there had been generated versions of the artifact
with different fingerprints, with no need to present each of the
actual traceable artifact versions.

REFERENCES

[1] M. O. Rabin, “How to exchange secrets by oblivious transfer,” Harvard
Aiken Computation Laboratory, Tech. Rep., 1981.

[2] W. Bender, D. Gruhl, and N. Morimoto, “Techniques for data
hiding.” in Storage and Retrieval for Image and Video Databases
(SPIE), 1995, pp. 164–173. [Online]. Available: http://dblp.uni-
trier.de/db/conf/spieSR/spieSR95.html#BenderGM95

[3] I. Cox, M. L. Miller, and J. A. Bloom, Digital Watermarking. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002.

[4] M. J. Atallah, V. Raskin, M. Crogan, C. Hempelmann, F. Kerschbaum,
D. Mohamed, and S. Naik, “Natural language watermarking: Design,
analysis, and a proof-of-concept implementation.” in Information
Hiding, ser. Lecture Notes in Computer Science, I. S. Moskowitz,
Ed., vol. 2137. Springer, 2001, pp. 185–199. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ih/ihw2001.html#AtallahRCHKMN01

[5] M. J. Atallah, V. Raskin, C. Hempelmann, M. Karahan, R. Sion,
U. Topkara, and K. E. Triezenberg, “Natural language watermarking
and tamperproofing.” in Information Hiding, ser. Lecture Notes
in Computer Science, F. A. P. Petitcolas, Ed., vol. 2578.
Springer, 2002, pp. 196–212. [Online]. Available: http://dblp.uni-
trier.de/db/conf/ih/ih2002.html#AtallahRHKSTT02

[6] W. Zhu, C. D. Thomborson, and F.-Y. Wang, “A survey of software
watermarking.” in Proc. IEEE Int’l Conference on Intelligence and
Security Informatics, ser. ISI’05, P. B. Kantor, G. Muresan, F. S.
Roberts, D. D. Zeng, F.-Y. Wang, H. Chen, and R. C. Merkle,
Eds., vol. 3495. Springer, 2005, pp. 454–458. [Online]. Available:
http://dblp.uni-trier.de/db/conf/isi/isi2005.html#ZhuTW05

[7] J. Hamilton and S. Danicic, “A survey of static software watermarking,”
Proc. World Congress on Internet Security, pp. 100–107, 2011.

[8] R. L. Ostergard, “The measurement of intellectual property
rights protection,” Journal of International Business Studies,
vol. 31, no. 2, pp. 349–360, 2000. [Online]. Available:
http://EconPapers.repec.org/RePEc:pal:jintbs:v:31:y:2000:i:2:p:349-360

[9] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection, 1st ed. Addison-
Wesley Professional, 2009.

[10] S. Craver, N. D. Memon, B.-L. Yeo, and M. M. Yeung, “Resolving
rightful ownerships with invisible watermarking techniques: limitations,
attacks, and implications.” IEEE Journal on Selected Areas in
Communications, vol. 16, no. 4, pp. 573–586, 1998. [Online]. Available:
http://dblp.uni-trier.de/db/journals/jsac/jsac16.html#CraverMYY98

[11] A.-R. Sadeghi and A. Adelsbach, “Advanced techniques for dispute
resolving and authorship proofs on digital works,” in Security and
Watermarking of Multimedia Contents V, 2003.

[12] S. Haber and W. S. Stornetta, “How to time-stamp a digital document.”
J. Cryptology, vol. 3, no. 2, pp. 99–111, 1991. [Online]. Available:
http://dblp.uni-trier.de/db/journals/joc/joc3.html#HaberS91

[13] C. Liem, Y. X. Gu, and H. Johnson, “A compiler-based infrastructure
for software-protection,” in Proceedings of the Third ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security, ser.
PLAS ’08. New York, NY, USA: ACM, 2008, pp. 33–44. [Online].
Available: http://doi.acm.org/10.1145/1375696.1375702

[14] G. Brassard, C. Crpeau, and J.-M. Robert, “Information theoretic
reductions among disclosure problems,” in FOCS. IEEE Computer
Society, 1986, pp. 168–173. [Online]. Available: http://dblp.uni-
trier.de/db/conf/focs/focs86.html#BrassardCR86

[15] C. Crpeau, “Equivalence between two flavours of oblivious transfers.”
in CRYPTO, ser. Lecture Notes in Computer Science, C. Pomerance,
Ed., vol. 293. Springer, 1987, pp. 350–354. [Online]. Available:
http://dblp.uni-trier.de/db/conf/crypto/crypto87.html#Crepeau87

[16] C. Crpeau and J. Kilian, “Weakening security assumptions
and oblivious transfer (abstract).” in CRYPTO, ser. Lecture
Notes in Computer Science, S. Goldwasser, Ed., vol. 403.
Springer, 1988, pp. 2–7. [Online]. Available: http://dblp.uni-
trier.de/db/conf/crypto/crypto88.html#CrepeauK88

[17] M. Bellare and S. Micali, “Non-interactive oblivious transfer and
applications,” in Advances in Cryptology CRYPTO 89 Proceedings,
ser. Lecture Notes in Computer Science, G. Brassard, Ed. Springer
New York, 1990, vol. 435, pp. 547–557. [Online]. Available:
http://dx.doi.org/10.1007/0-387-34805-0 48

[18] B. Schneier, Applied cryptography. Wiley New York, 1996.
[19] L. Bento, D. Boccardo, R. Machado, V. de S, and J. Szwarcfiter,

“A randomized graph-based scheme for software watermarking,” in
Proceedings of Brazilian Symposium in Information and Computater
Systems Security, ser. SBSEG. SBC, 2014, pp. 30–41.

[20] J. Kilian, Uses of randomness in algorithms and protocols. MIT Press,
1990.

[21] T. J. Schaefer, “The complexity of satisfiability problems,” in 10th
annual ACM symposium on Theory of Computing. ACM, 1978, pp.
216–226.

[22] G. Tseitin, “On the complexity of derivation in propositional calculus,”
in Automation of Reasoning, ser. Symbolic Computation, J. Siekmann
and G. Wrightson, Eds. Springer Berlin Heidelberg, 1983, pp. 466–483.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-81955-1 28

[23] R. Karp, “Reducibility among combinatorial problems,” in Complexity
of Computer Computations, R. Miller and J. Thatcher, Eds. New York:
Plenum Press, 1972.

[24] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof-systems,” in Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing, ser. STOC ’85. New
York, NY, USA: ACM, 1985, pp. 291–304. [Online]. Available:
http://doi.acm.org/10.1145/22145.22178

