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1 Instituto de Matemática, NCE, and COPPE, Universidade Federal do Rio de
Janeiro, Rio de Janeiro, RJ, Brazil, carmen@cos.ufrj.br,vigusmao@dcc.ufrj.br

2 Institut für Optimierung und Operations Research, Universität Ulm, Ulm,
Germany, lucia.penso@uni-ulm.de, dieter.rautenbach@uni-ulm.de

Abstract. We study the graphs G for which the hull number h(G) and
the geodetic number g(G) with respect to P3-convexity coincide. These
two parameters correspond to the minimum cardinality of a set U of
vertices of G such that the simple expansion process that iteratively adds
to U , all vertices outside of U that have two neighbors in U , produces the
whole vertex set of G either eventually or after one iteration, respectively.
We establish numerous structural properties of the graphs G with h(G) =
g(G), which allow the constructive characterization as well as the efficient
recognition of all triangle-free such graphs. Furthermore, we characterize
the graphs G that satisfy h(H) = g(H) for every induced subgraph H of
G in terms of forbidden induced subgraphs.
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1 Introduction

As one of the most elementary models of the spreading a property within a
network — like sharing an idea or disseminating a virus — one can consider
a graph G, a set U of vertices of G that initially possess the property, and an
iterative process whereby new vertices u enter U whenever sufficiently many
neighbors of u are already in U . The simplest choice for “sufficiently many”
that results in interesting effects is 2. This choice leads to the irreversible 2-
threshold processes considered by Dreyer and Roberts [5]. Similar models were
studied in various contexts such as statistical physics, social networks, marketing,
and distributed computing under different names such as bootstrap percolation,
influence dynamics, local majority processes, irreversible dynamic monopolies,
catastrophic fault patterns and many others [1–3,5, 7–10].

From the point of view of discrete convexity, the above spreading process
is nothing but the formation of the convex hull of the set U of vertices of G
with respect to the so-called P3-convexity in G, where a set C of vertices of G is



considered to be P3-convex if no vertex of G outside of C has two neighbors in
C. A P3-hull set of G is a set of vertices whose P3-convex hull equals the whole
vertex set of G, and the minimum cardinality of a P3-hull set of G is the P3-hull
number h(G) of G.

Closely related to the notion of hull sets and the hull number of a graph
are geodetic sets and the geodetic number. A P3-geodetic set of graph G is a
set of vertices such that every vertex u of G either belongs to the set or has
two neighbors in the set. The minimum cardinality of a P3-geodetic set of G
is the P3-geodetic number g(G) of G. Different types of graph convexities have
been considered in the literature, and the definitions of hull and geodetic sets
change accordingly. For the special case of P3-convexity, the P3-geodetic number
coincides with the well-studied 2-domination number [6].

In view of the iterative spreading process considered above, a hull set even-
tually distributes the property within the entire network, whereas a geodetic set
spreads the property within the entire network in exactly one iteration. In [11]
we considered spreading processes with arbitrary deadlines between 1 and ∞.
Clearly, every geodetic set is a hull set, which implies

h(G) ≤ g(G) (1)

for every graph G. Furthermore, both parameters are computationally hard in
general, and efficient algorithms are only known for quite restricted graph classes
[4, 6].

In the present paper we study graphs that satisfy (1) with equality. After
summarizing useful notation and terminology, we collect numerous structural
properties of such graphs in Section 2. Based on these properties, we construct
a large subclass of those graphs in Section 3, comprising all triangle-free such
graphs. In Section 4 we derive an efficient algorithm for the recognition of the
triangle-free graphs that satisfy (1) with equality. In Section 5 we give a com-
plete characterization in terms of forbidden induced subgraphs of the class of all
graphs for which (1) holds with equality for every induced subgraph. Finally, we
conclude with some open problems in Section 6.

1.1 Notation and Terminology

We consider finite and simple graphs and digraphs, and use standard terminol-
ogy. For a graph G, the vertex set is denoted V (G) and the edge set is denoted
E(G). For a vertex u of a graph G, the neighborhood of u in G is denoted NG(u)
and the degree of u in G is denoted dG(u). A vertex of a graph whose removal
increases the number of components is a cut vertex. A set C of vertices of G
is P3-convex exactly if no vertex of G outside C has two neighbors in C. The
P3-convexity of G is the collection C(G) of all P3-convex sets. Since we only
consider P3-convexity, we will omit the prefix “P3-” from now on.

For a set U of G, let the interval IG(U) of U in G be the set U ∪ {u ∈
V (G) \ U | |NG(u) ∩ U | ≥ 2}, and let HG(U) denote the convex hull of U in
G, that is, HG(U) is the unique smallest set in C(G) containing U . Within this



notation, U is a geodetic set of G if IG(U) = V (G), and U is a hull set of G if
HG(U) = V (G). The inequality (1) follows from the immediate observation that
IG(U) ⊆ HG(U) for every set U of vertices of some graph G.

If U is a hull set of G, then there is an acyclic orientation D of a spanning
subgraph of G such that the in-degree d−D(u) is 0 for every vertex u in U and 2
for every vertex u in V (G) \ U . We call D a hull proof for U in G.

Since the hull number and the geodetic number are both additive with respect
to the components of G, we consider the set of graphs

H = {G | G is a connected graph with h(G) = g(G)}.

2 Structural properties of graphs in H

We collect some structural properties of the graphs in H in the form of lemmas
which will be required to prove our main results in the next section. The proofs
of many lemmas in this section, however, were omitted due to space limitations
and left to an extended version of this paper.

Let G be a fixed graph in H. Let W be a geodetic set of G of minimum
order and let B = V (G) \ W . By definition, every vertex in B has at least
two neighbors in W . Therefore, G has a spanning bipartite subgraph G0 with
bipartition V (G0) = W ∪ B such that every vertex in B has degree exactly
2 in G0. Let E1 denote the set of edges in E(G) \ E(G0) between vertices in
the same component of G0 and let E2 denote the set of edges in E(G) \ E(G0)
between vertices in distinct components of G0. Note that, by construction, W
is a geodetic set of G0. Since |W | = g(G) = h(G) ≤ h(G0) ≤ g(G0) ≤ |W |, we
obtain h(G0) = g(G0) = |W |, that is, G0 has no geodetic set and no hull set
of order less than |W |. Thus, if C is a component of G0, then W ∩ V (C) is a
minimum geodetic set of C as well as a minimum hull set of C.

Lemma 1. Let C be a component of G0.

(i) No two vertices in C are incident with edges in E2.
(ii) If some vertex u in C is incident with at least two edges in E2, then u

belongs to B and u is a cut vertex of C.

Proof. (i) We consider different cases. If two vertices w and w′ in V (C)∩W are
incident with edges in E2, then let P : w1b1 . . . wl−1bl−1wl be a shortest path in
C between w = w1 and w′ = wl. The set (W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is
a hull set of G, which is a contradiction.

If a vertex w in V (C)∩W and a vertex b in V (C)∩B are incident with edges
in E2, then let P : w1b1 . . . wlbl be a shortest path in C between w = w1 and
b = bl. Note that b has a neighbor in G0 that does not belong to P . Therefore, the
set (W \ {w1, . . . , wl})∪{b1, . . . , bl−1} is a hull set of G, which is a contradiction.

Finally, if two vertices b and b′ in V (C) ∩ B are incident with edges in E2,
then let P : b1w1 . . . bl−1wl−1bl be a shortest path in C between b = b1 and
b′ = bl. Note that b and b′ both have neighbors in G0 that do not belong to P .



Therefore, the set (W \ {w1, . . . , wl−1})∪{b2, . . . , bl−1} is a hull set of G, which
is a contradiction.

(ii) If a vertex w in V (C) ∩W is incident with at least two edges in E2, then
W \ {w} is a hull set of G, which is a contradiction.

If a vertex b in V (C) ∩ B that is not a cut vertex of C is incident with at
least two edges in E2, then let P : w1b1 . . . wl−1bl−1wl be a path in C avoiding b
between the two neighbors w1 and wl of b in G0. The set (W \ {w1, . . . , wl}) ∪
{b1, . . . , bl−1} is a hull set of G, which is a contradiction and completes the proof.

Lemma 2. If G0 is not connected, no two vertices in W that belong to the same
component of G0 are adjacent.

Proof. For contradiction, we assume that ww′ is an edge of G where w and
w′ are vertices in W that belong to the same component C of G0. Since G is
connected, there is an edge uv in E2 with u ∈ V (C) and v ∈ V (G) \ V (C).

First, we assume that u belongs to W . Let P : w1b1 . . . wl−1bl−1wl be a
shortest path in C between u = w1 and a vertex wl in {w,w′}. Note that l = 1
is possible. The set (W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a hull set of G, which
is a contradiction.

Next, we assume that u belongs to B. Let P : b1w1 . . . blwl be a shortest path
in C between u = b1 and a vertex wl in {w,w′}. Note that l = 1 is possible.
Furthermore, note that b1 has a neighbor in G0 that does not belong to P . The
set (W \ {w1, . . . , wl}) ∪ {b2, . . . , bl} is a hull set of G, which is a contradiction
and completes the proof.

Lemma 3. If G0 is not connected and C is a component of G0, then there are
no two vertices w in V (C)∩W and b in V (C)∩B such that wb ∈ E(G)\E(G0).

Proof. For contradiction, we assume that wb is an edge of G where w in W and
b in B belong to the same component C of G0. Since G is connected, there is an
edge uv in E2 with u ∈ V (C) and v ∈ V (G) \ V (C).

First, we assume that u ∈W . Let P be a shortest path in C between u and
a vertex u′ in {w, b}. If u′ = w, then let P : w1b1 . . . bl−1wl where u = w1 and
w = wl. Note that l = 1 is possible. In this case the set (W \ {w1, . . . , wl}) ∪
{b1, . . . , bl−1} is a hull set of G, which is a contradiction. If u′ = b, then let
P : w1b1 . . . bl−1wlbl where u = w1 and b = bl. Note that l = 1 is possible.
Furthermore, note that b has a neighbor in G0 that does not belong to P . In
this case, the set (W \ {w1, . . . , wl}) ∪ {b1, . . . , bl−1} is a hull set of G, which is
a contradiction.

Next, we assume that u = b. Let P : b1w1 . . . blwl be a shortest path in C
between b = b1 and w = wl. Note that the edge bw does not belong to C, hence
l ≥ 2. Furthermore, note that b has a neighbor in G0 that does not belong to P .
In this case, the set (W \ {w1, . . . , wl}) ∪ {b2, . . . , bl} is a hull set of G, which is
a contradiction.

Finally, we assume that u ∈ B \ {b}. Let P be a shortest path in C between
u and a vertex u′ in {w, b}. If u′ = w, then let P : b1w1 . . . blwl, where u = b1



and w = wl. Note that l = 1 is possible. Furthermore, note that w is the unique
neighbor of b in P , and that u has a neighbor in G0 that does not belong to P .
In this case, the set (W \ {w1, . . . , wl})∪{b2, . . . , bl} is a hull set of G, which is a
contradiction. If u′ = b, then let P : b1w1 . . . wl−1bl, where u = b1 and b = bl. In
this case, the set (W \ {w1, . . . , wl−1}) ∪ {b2, . . . , bl−1} is a hull set of G, which
is a contradiction and completes the proof.

Lemma 4. Let G0 be disconnected and let b and b′ be two vertices in B that
belong to the same component C of G0 satisfying bb′ ∈ E1.

(i) Neither b nor b′ is incident with an edge in E2.
(ii) If some vertex w in V (C) ∩ W is incident with an edge in E2 and P :

w1b1 . . . wlbl is a path in C between w = w1 and a vertex bl in {b, b′}, then
wl is adjacent to both b and b′, and C contains no path between b and b′

that does not contain wl.
(iii) If some vertex b′′ in (V (C)∩B)\{b, b′} is incident with an edge in E2 and

P : b1w1 . . . wl−1bl is a path in C between b′′ = b1 and a vertex bl in {b, b′},
then wl−1 is adjacent to both b and b′ and C contains no path between b
and b′ that does not contain wl−1.

Lemma 5. If C is a component of G0, then there are no two vertices w and w′

of C that belong to W and two edges e and e′ that belong to E(G) \E(G0) such
that w is incident with e, w′ is incident with e′, and e′ is distinct from ww′.

Lemma 6. If C is a component of G0, then there are no two edges wb and wb′

that belong to E(G) \ E(G0) with w ∈W ∩ V (C) and b, b′ ∈ B ∩ V (C).

Lemma 7. If G0 is connected and G is triangle-free, then there are no two edges
ww′ and bb′ in G with w,w′ ∈W and b, b′ ∈ B.

Lemma 8. If G0 is connected and G is triangle-free, then there are no two edges
wb and b′b′′ in G with w ∈W and b, b′, b′′ ∈ B.

Lemma 9. If G0 is connected and G is triangle-free, then there are no two
distinct edges bb′ and b′′b′′′ in G with b, b′, b′′, b′′′ ∈ B.

3 Constructing all triangle-free graphs in H

Let G0 denote the set of all bipartite graphs G0 with a fixed bipartition V (G0) =
B ∪W such that every vertex in B has degree exactly 2.

We consider four distinct operations that can be applied to a graph G0 from
G0.

– Operation O1

Add one arbitrary edge to G0.
– Operation O′1

Select two vertices w1 and w2 from W and arbitrarily add new edges between
vertices in {w1, w2} ∪ (NG0(w1) ∩NG0(w2)) .



– Operation O2

Add one arbitrary edge between vertices in distinct components of G0.
– Operation O3

Choose a non-empty subset X of B such that all vertices in X are cut
vertices of G0 and no two vertices in X lie in the same component of G0.
Add arbitrary edges between vertices in X so that X induces a connected
subgraph of the resulting graph. For every component C of G0 that does not
contain a vertex from X, add one arbitrary edge between a vertex in C and
a vertex in X.

Let G1 denote the set of graphs that are obtained by applying operation O1 once
to a connected graph G0 in G0. Let G′1 denote the set of graphs that are obtained
by applying operation O′1 once to a connected graph G0 in G0. Let G2 denote the
set of graphs that are obtained by applying operation O2 once to a graph G0 in
G0 that has exactly two components. Let G3 denote the set of graphs that are
obtained by applying operation O3 once to a graph G0 in G0 that has at least
three components. Note that O3 can only be applied if G0 has at least one cut
vertex that belongs to B.

Finally, let

G = G1 ∪ G′1 ∪ G2 ∪ G3. (2)

Since the operation O′1 allows that no edges are added, the set G′1 contains all
connected graphs in G0.

Theorem 1. G ⊆ H.

Proof. Let G be a graph in G that is obtained by applying some operation to a
graph G0 in G0. Let V (G0) = B ∪W be the fixed bipartition of G0. Since every
vertex in B has two neighbors in W , the partite set W is a geodetic set of G and
therefore g(G) ≤ |W |. By (1), it suffices to show that h(G) ≥ |W | to conclude
the proof. For contradiction, we assume that U is a hull set of G with |U | < |W |.
Let D be a hull proof for U in G.

The proof naturally splits into four cases according to which of the four sets
G1, G′1, G2, and G3 the graph G belongs to. Due to space limitation, we give the
details of the proof only for one case.

Case 1 G ∈ G1.

Let W1 = W \ U and B0 = B ∩ U . Note that, by the above assumption, |W1| >
|B0| ≥ 0.

We claim that there is at most one vertex w in W1 for which the set NG0(w)
contains exactly one vertex of B0 and that for every other vertex w′ in W1, the
set NG0

(w′) contains at least two vertices of B0. In other words, there is a vertex
w∗ in W1 such that

|NG0
(w) ∩B0| ≥

{
1, w = w∗,
2, w ∈W1 \ {w∗}.

(3)



Let w be a vertex in W1. Since |W1| > |B0|, we may assume that NG0
(w) contains

at most one vertex from B0. Let x and y denote the two in-neighbors of w in D.
Let e denote the edge added by operation O1.

If x belongs to W , then e is the edge xw. Hence y ∈ B and dG(y) = 2.
Therefore y ∈ B0, that is, y ∈ NG0

(w)∩B0. Furthermore, for every other vertex
w′ in W1 \ {w}, its two in-neighbors x′ and y′ in D both belong to B and are
not incident with e. Hence dG(x′) = dG(y′) = 2 and therefore x′, y′ ∈ B0, that
is, x′, y′ ∈ NG0

(w)∩B0. Hence, we may assume that x and y both belong to B.
If e is the edge wx, then we obtain as above that y ∈ NG0

(w)∩B0. Hence x
does not belong to B0. This implies that the two edges of G0 incident with x are
both oriented towards x in D. For every other vertex w′ in W1 \ {w}, it follows
that its two in-neighbors x′ and y′ in D satisfy x′, y′ ∈ NG0

(w)∩B0. Hence, we
may assume that e is neither wx nor wy.

Since NG0(w) contains at most one element from B0, we may assume that e is
incident with x and oriented towards x in D. This implies that y ∈ NG0(w)∩B0.
Furthermore, for every other vertex w′ in W1 \ {w}, its two in-neighbors x′

and y′ in D both belong to B, and, if they are incident with e, then e is not
oriented towards them in D. This implies that x′ and y′ belong to B0, that is,
x′, y′ ∈ NG0(w′) ∩B0.

Altogether, the existence of a vertex w∗ in W1 with (3) follows. If m denotes
the number of edges in G0 between W1 and B0, then (3) implies m ≥ 2(|W1| −
1) + 1. Furthermore, every vertex in B has degree 2 in G0 and therefore m ≤
2|B0|. Thus, 2|W1| − 1 ≤ 2|B0|. Since both cardinalities are integers, we obtain
|W1| ≤ |B0|, hence

|U | = |W ∩ U |+ |B ∩ U | ≥ |W ∩ U |+ |W \ U | = |W |,

which is a contradiction. This completes the proof.

In conjunction, the results in Sections 2 and Theorem 1 allow for a complete
constructive characterization of the triangle-free graphs in H.

Corollary 1. If T denotes the set of all triangle-free graphs, then G∩T = H∩T .

Proof. Theorem 1 implies G ∩T ⊆ H∩T . For the converse inclusion, let G be a
triangle-free graph in H. Similarly as in Section 2, let W be a minimum geodetic
set of G, let B = V (G) \W , and let G0 be a spanning bipartite subgraph of G
with bipartition V (G0) = W ∪B such that every vertex in B has degree exactly
2 in G0. Let E1 denote the set of edges in E(G) \ E(G0) between vertices in
the same component of G0 and let E2 denote the set of edges in E(G) \ E(G0)
between vertices in distinct components of G0.

First, we assume that G0 is connected. In this case, E1 = E(G) \ E(G0).
For contradiction, we assume that E1 contains two edges e and e′. By Lemmas
5 and 6, the edges e and e′ are not both incident with vertices in W . We may
therefore assume that e connects two vertices from B. Now, since G is triangle-
free, Lemmas 7, 8, and 9 imply a contradiction. Hence E1 contains at most one
edge, which implies G ∈ G1 ∪ G′1.



Next, we assume that G0 is disconnected. By Lemmas 2 and 3, all vertices
incident with edges in E1 belong to B. For contradiction, we assume that E1 is
not empty. Let bb′ ∈ E1, where b and b′ belong to some component C of G0. Since
G is connected but G0 is not, some vertex of C is incident with an edge f from
E2. By Lemma 4, the edge f is not incident with b or b′. Furthermore, by Lemma
4 (ii) and (iii), G necessarily contains a triangle, which is a contradiction. Hence
E1 is empty. Now Lemma 1 immediately implies G ∈ G2 ∪ G3, which completes
the proof.

Corollary 1 implies several restrictions on the cycle structure of a triangle-free
graph G in H. Let G0 with bipartition B ∪W be the underlying graph in G0.
Clearly, all cycles of G that are also cycles of G0 are of even length and alternate
between B and W . Furthermore, at most one of the vertices from B in such a
cycle can have degree more than 2 in G. If G0 is connected, the cycles of G are
either such cycles of G0 or they contain the unique edges in E(G)\E(G0). If G0

has two components, then G arises from G0 by adding a bridge and all cycles of
G are also cycles of G0. Finally, if G0 has at least three components and X is as
described in O3, then X induces an arbitrary connected triangle-free graph in G,
that is, the cycle structure of G[X] can be quite complicated. Nevertheless, all
cycles in G[X] contain only vertices of degree at least 4 in G. All further cycles
of G are totally contained within one component of G0 and contain at least one
vertex from B that has degree 2 in G.

4 Recognizing all triangle-free graphs in H

By Corollary 1, the structure of the triangle-free graphs in H is quite restricted.
In fact, it is not difficult to recognize these graphs in polynomial time. This
section is devoted to the details of a corresponding algorithm.

Let G be a given connected triangle-free input graph. By Corollary 1, the
graph G belongs to H if and only if either G belongs to G0∪G1∪G2 or G belongs
to G3.

Lemma 10. It can be checked in polynomial time whether G ∈ G0 ∪ G1 ∪ G2.

Proof. By definition, the graph G belongs to G0 ∪ G1 ∪ G2 if and only if deleting
at most one edge from G results in a graph in G0 with at most two components.
Since the graphs in G0 can obviously be recognized in linear time, it suffices
to check whether G ∈ G0 and to consider each edge e of G in turn and check
whether G − e ∈ G0. Since the graphs in G0 ∪ G1 ∪ G2 have a linear number of
edges, all this can be done in quadratic time. This completes the proof.

In view of Lemma 10, we may assume from now on that G does not belong
G0∪G1∪G2. The following lemma is an immediate consequence of the definition
of operation O3.

Lemma 11. If G belongs to G3, then there is a vertex x of G of degree at least
three and two edges el = xyl and er = xyr of G incident with x such that, in the



graph G′ that arises by deleting from G all edges incident with x except for el and
er, the component C(x, el, er) of G′ that contains x has the following properties:

(i) x is a cut vertex of C(x, el, er);
(ii) C(x, el, er) has a unique bipartition with partite sets Bl ∪ {x} ∪ Br and

Wl ∪Wr;
(iii) Every vertex in Bl ∪ {x} ∪Br has degree 2 in C(x, el, er);
(iv) Bl∪Wl and Br∪Wr are the vertex sets of the two components of C(x, el, er)−

x such that yl ∈Wl and yr ∈Wr;
(v) None of the deleted edges connects x to a vertex from V (C(x, el, er)) \ {x};

(vi) Wl and Wr both contain a vertex of odd degree.

Proof. Choosing as x one of the vertices from the non-empty set X in the defi-
nition of O3 and choosing as e1 and e2 the two edges of G0 incident with x, the
properties (i) to (v) follow immediately. Note that C(x, el, er) is the component
of G0 that contains x. For property (vi), observe that the number of edges of
C(x, el, er) between Bl ∪ {x} and Wl is exactly 2|Bl| + 1, that is, it is an odd
number, which implies that not all vertices of Wl can be of even degree. A similar
argument applies to Wr. This completes the proof.

The key observation for the completion of the algorithm is the following lemma,
which states that the properties from Lemma 11 uniquely characterize the ele-
ments of X.

Lemma 12. If G belongs to G3 and a vertex x of G of degree at least three and
two edges el = xyl and er = xyr of G incident with x are such that properties
(i) to (vi) from Lemma 11 hold, then

(i) G is obtained by applying operation O3 to a graph G0 in G0 with at least
three components such that x belongs to the set X used by operation O3

and
(ii) C(x, el, er) defined as in Lemma 11 is the component of G0 that contains

x.

We proceed to the main result in this section.

Theorem 2. For a given triangle-free graph G, it can be checked in polynomial
time whether h(G) = g(G) holds.

Proof. Clearly, we can consider each component of G separately and may there-
fore assume that G is connected. Let n denote the order of G. By Lemma 10,
we can check in O(n2) time whether G belongs G0 ∪ G1 ∪ G2. If this is the case,
then Corollary 1 implies h(G) = g(G). Hence, we may assume that G does not
belong to G0∪G1∪G2. Note that there are O(n3) choices for a vertex x of G and
two incident edges el and er of G. Furthermore, note that for every individual
choice of the triple (x, el, er), the properties (i) to (vi) from Lemma 11 can be
checked in O(n) time. Therefore, by Lemmas 11 and 12, in O(n4) time, we can



– either determine that no choice of (x, el, er) satisfies the conclusion of Lemma
11, which, by Corollary 1, implies h(G) 6= g(G),

– or find a suitable triple (x, el, er) and reduce the instance G to a smaller
instance G− = G− V (C(x, el, er)).

Since the order of G− is at least three less than n, this leads to an overall running
time of O(n5). This completes the proof.

5 Forbidden induced subgraphs

It is an easy exercise to prove h(G) = g(G) whenever G is a path, a cycle, or a
star.
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Fig. 1. The five graphs G1, . . . , G5.

Theorem 3. If G is a graph, then h(H) = g(H) for every induced subgraph H
of G if and only if G is {G1, . . . , G5}-free.

Proof. Since 3 = h(G1) = h(G3) < g(G1) = g(G3) = 4 and 2 = h(G2) =
h(G4) = h(G5) < g(G2) = g(G4) = g(G5) = 3, the “only if”-part of the state-
ment follows. In order to prove the “if”-part, we may assume, for contradiction,
that G is a connected {G1, . . . , G5}-free graph with h(G) < g(G). We consider
different cases.

Case 1 G contains a triangle T : abca.

Since G is G2-free, no vertex has exactly one neighbor on T .
If some vertex has no neighbor on T , then, by symmetry, we may assume

that there are two vertices u and v of G such that uva is a path and u has no
neighbor on T . Since G is G2-free, we may assume that v is adjacent to b. Now
u, v, a, and b induce G2, which is a contradiction. Hence every vertex has at
least one neighbor on T . This implies that the vertex set of G can be partitioned
as

V (G) = {a, b, c} ∪N({a, b}) ∪N({a, c}) ∪N({b, c}) ∪N({a, b, c}),

where N(S) = {u ∈ V (G) \ {a, b, c} | NG(u) ∩ {a, b, c} = S}.
If two vertices, say u and v, in N({a, b}) are adjacent, then u, v, a, and c

induce G2, which is a contradiction. Hence, by symmetry, each of the three sets
N({a, b}), N({a, c}), and N({b, c}) is independent. If some vertex u in N({a, b})



is not adjacent to some vertex v in N({a, c}), then u, v, a, and b induce G2, which
is a contradiction. Hence, by symmetry, there are all possible edges between
every two of the three sets N({a, b}), N({a, c}), and N({b, c}). If some vertex u
in N({a, b}) is not adjacent to some vertex v in N({a, b, c}), then u, v, a, and c
induce G2, which is a contradiction. Hence, by symmetry, there are all possible
edges between the two sets N({a, b}) ∪ N({a, c}) ∪ N({b, c}) and N({a, b, c}).
If N({a, b}) contains exactly one vertex, say u, then IG({u, c}) = V (G), which
implies the contradiction 2 ≤ h(G) ≤ g(G) ≤ 2. Hence, by symmetry, none of
the three sets N({a, b}), N({a, c}), and N({b, c}) contains exactly one vertex. If
there are two vertices in N({a, b}), say u1 and u2, and two vertices in N({b, c}),
say v1 and v2, then u1, u2, v1, v2, a, and c induce G5, which is a contradiction.
Hence no two of the three sets N({a, b}), N({a, c}), and N({b, c}) contain at
least two vertices.

Altogether, we may assume, by symmetry, that N({a, c}) and N({b, c}) are
empty. Now IG({a, b}) = V (G), which implies the contradiction 2 ≤ h(G) ≤
g(G) ≤ 2 and completes the proof in this case.

Case 2 G contains no triangle but a cycle of length four C : abcda.

If some vertex has no neighbor on C, then, by symmetry, we may assume that
there are two vertices u and v of G such that uva is a path. Since G is triangle-
free, v is not adjacent to b or d. Hence u, v, a, b, and d induce G1, which is
a contradiction. Hence every vertex has at least one neighbor on C. Since G is
triangle-free, this implies that the vertex set of G can be partitioned as

V (G) = {a, b, c, d}∪N({a})∪N({b})∪N({c})∪N({d})∪N({a, c})∪N({b, d}),

where N(S) = {u ∈ V (G) \ {a, b, c, d} | NG(u) ∩ {a, b, c, d} = S}.
If there is a vertex u in N({a}) and a vertex v in N({c}), then u and v

are adjacent, because G is G3-free. Now u, v, a, b, and d induce G1, which is
a contradiction. Hence, by symmetry, we may assume that N({c}) ∪N({d}) is
empty. If there is a vertex u in N({b}) and a vertex v in N({a, c}), then u and v
are not adjacent, because G is G4-free. Now u, v, a, b, and d induce G1, which is
a contradiction. Hence, by symmetry, one of the two sets N({b}) and N({a, c})
is empty and one of the two sets N({a}) and N({b, d}) is empty. If there is a
vertex u in N({a, c}) and a vertex v in N({b, d}), then u, v, a, b, c, and d induce
either G4 or G5, which is a contradiction. Hence, by symmetry, we may assume
that N({b, d}) is empty.

Since G is G1-free, there are all possible edges between the two sets N({a})
and N({b}).

Since G is G1-free, both of the sets N({a}) and N({b}) contain at most one
vertex.

Since G is G1-free, there is no edge between N({a}) and N({a, c}).
If both of the sets N({a}) and N({b}) are not empty, then G is a graph of

order 6 with h(G) = g(G) = 3, which is a contradiction. Hence, by symmetry,
we may assume that

V (G) = {a, b, c, d} ∪N({a}) ∪N({a, c}).



If N({a}) is empty, then IG({a, c}) = V (G), which implies the contradiction
2 ≤ h(G) ≤ g(G) ≤ 2. Hence N({a}) contains exactly one vertex, say u, and
IG({a, c, u}) = V (G), which implies g(G) ≤ 3. If HG(U) = V (G) for some set
U of vertices of G, then u ∈ U . In view of the structure of G, it follows easily
that h(G) ≥ 3, which implies the contradiction h(G) = g(G) and completes the
proof in this case.

Case 3 G does not contain a triangle or a cycle of length four.

If G contains no vertex of degree at least 3, then G is a path or a cycle, which
implies the contradiction h(G) = g(G). Hence, we may assume G contains a
vertex of degree at least 3. Since G is G1-free, G is a star, which implies the
contradiction h(G) = g(G) and completes the proof.

6 Conclusion

Several open problems/tasks are immediate.

– Give a constructive characterization of all graphs in H.
– Describe an efficient algorithm to recognize all graphs in H.
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