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Abstract. This thesis presents state-of-the-art results in two areas of increasing
relevance over recent years: graph sandwich problems and randomized algo-
rithms. Sandwich problems are generalizations of recognition problems where
the input graph is provided with a set of optional edges. The Homogeneous
Set Sandwich Problem, subject of this thesis, is one of the few polynomial-time
sandwich problems known to date. Following the first two algorithms (not ours)
published for it (one of which proved incorrect in [Sá 2003]), we introduce a se-
ries of eight faster algorithms, among deterministic and randomized ones. The
text shows a comprehensive range of continuously refined techniques, culminat-
ing at the establishment of the problem’s currently accepted upper bound.

1. Introduction
A graph G2(V, E2) is a supergraph of a graph G1(V,E1) if E2 ⊇ E1. A graph GS(V, ES)
is said to be a sandwich graph of G1(V, E1), G2(V,E2) iff E1 ⊆ ES ⊆ E2. A sandwich
problem for property Π asks whether a given pair of graphs admits a sandwich graph
that presents property Π [Golumbic et al. 1995]. Originally arisen from Computational
Biology applications, they have encompassed many research areas ever since. (Figure 1
shows a typical input for a sandwich problem.)

A homogeneous set of a graph G(V, E) is a set H ⊂ V , 2 ≤ |H| < |V |, such that
for all v ∈ V \H , either (v, h) ∈ E for all h ∈ H or (v, h) /∈ E for all h ∈ H . Homoge-
neous sets are useful, among other things, in graph decomposition procedures, specially in
the perfect graphs field [Lovász 1972]. The Homogeneous Set Sandwich Problem (HSSP)
poses the question: is there a sandwich graph GS(V, ES) of (G1, G2) containing a homo-
geneous set? If so, such a homogeneous set is called a sandwich homogeneous set (SHS)
of (G1, G2). (Figure 2 illustrates a SHS.)

Sandwich problems for most graph properties considered thus far have
proved to be NP-complete [Golumbic and Wassermann 1998, Kaplan and Shamir 1999,
Dantas et al. 2004]. The HSSP, which belongs to the seemingly small class of poly-
nomial sandwich problems, has attracted attention [Cerioli et al. 1998, Tang et al. 2001,
Habib et al. 2003] as a challenging problem, since its known algorithms are consider-
ably less efficient than the existing linear-time algorithms for homogeneous sets recogni-
tion [McConnell and Spinrad 1994, Dahlhaus et al. 2001].

The first polynomial-time HSSP algorithm was published in [Cerioli et al. 1998].
A few years later, [Tang et al. 2001] tailored an interesting algorithm which would have
largely diminished HSSP’s upper bound. Nevertheless, that algorithm was hopelessly
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Figure 1. Typical instance for graph sandwich problems
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Figure 2. {3,7}: SHS of pair of graphs from Figure 1

incorrect [Sá 2003, Sá and Figueiredo 2005]. Consequently, the most efficient algorithm
for the HSSP would have turned back to be Cerioli et al.’s O(n4) algorithm1. However, we
present a sequence of six faster algorithms, including the one which sets the problem’s
currently accepted upper bound at O(nm log n). Furthermore, we present two efficient
O(n3) randomized algorithms2 for the HSSP (which happen to be quite didactic, as well,
as experience has shown).

2. Bias Vertices
A bias vertex of a set F ⊂ V is a vertex b ∈ V \ F such that, for some vi, vj ∈ F , there
hold (b, vi) ∈ E1 and (b, vj) /∈ E2. The set B(F ) comprising all bias vertices of F defines
the bias set of F . (Figure 3 illustrates this concept, the dashed edge meaning a non-edge.)
It is easy to show that set H ⊂ V, |H| ≥ 2, is a SHS of (G1, G2) iff B(H) is empty.

Clearly, if b is a bias vertex of set H , then b is also a bias vertex of every set H ′

containing H such that b /∈ H ′. This simple fact gave rise to a procedure which we refer
to as bias envelopment. Starting from a given initial SHS candidate H1 ⊂ V , it computes
Hq = Hq−1 ∪ B(Hq−1) until either (i) B(Hq) = ∅, whereupon Hq is a SHS and a yes
answer ensues, or (ii) Hq ∪ B(Hq) = V , when the resulting no answer means there is
no SHS containing H1. The bias envelopment procedure, which runs in O(n2) time, is
enough to show that the HSSP is polynomial. Indeed, the idea of Cerioli et al.’s so-called

1We denote n = |V |, m = min{|E1|, |E2|}, M = max{|E1|, |E2|} and 4 = maximum degree in G2.
2Randomized algorithms employ randomly generated numbers to make choices during their computa-

tion. Recent years have witnessed a growth in the number of published randomized algorithms for a number
of problems, since, as compared to deterministic algorithms, they are often simpler or faster—or both.
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Figure 3. Vertex 4: bias vertex of {2,3}

Exhaustive Envelopments (EE) algorithm was that of submitting vertex pairs to the bias
envelopment procedure until a SHS has been found or all O(n2) two-vertex candidates
have otherwise been exhausted.

This text is a brief introduction to the ideas underlying the algorithms that fol-
lowed. Obviously, it does not delve into details due to space constraints. It also skips the
counterproof of Tang et al.’s O(n24) algorithm—referred to as the Bias Graph Compo-
nents (BGC) algorithm—and the O(mM) first algorithm of ours—namely, the Two-Phase
(2-P) algorithm—, both in [Sá 2003] and therefore prior to the present thesis.

3. The Balanced Subsets algorithm

We introduce a variation for the bias envelopment procedure: the incomplete bias envel-
opment. Its input comprises not only a pair G1(V, E1), G2(V, E2) and a candidate H1, but
also a stop parameter k ≤ n. Whenever the size of the candidate has become greater than
k, the envelopment stops with a no answer. Running in O(nk) time, it states whether H1

is contained in any SHS’s with k vertices or less.

When the Balanced Subsets (BS) algorithm starts, it partitions all n input vertices
into d√n e disjoint subsets Ci of size O(

√
n) each. Then all pairs of vertices will be

submitted to bias envelopment in two distinct moments: first, the candidates will be pairs
consisting of vertices from the same subset Ci; only then, all remaining pairs are made
candidates. The point is, if all bias envelopments in the first moment fail to find a SHS,
then the input instance has no SHS’s with vertices from a same subset Ci, hence the
maximum size of SHS’s that still have to be looked for is d√n e—and incomplete bias
envelopments with stop parameter k = d√n e can be safely employed thenceforth.

Interestingly, the two big groups of bias envelopments demand the same O(n3
√

n)
time3, which is also the overall worst-case time complexity of the BS algorithm.

4. The Monte Carlo HSSP algorithm

A yes-biased Monte Carlo algorithm for a decision problem is one which answers yes
with probability at least p = 1 − ε if the correct answer is yes, and always answers no
when the correct answer is no. In other words, though it may fail to find one, all its yes
answers come with a valid certificate.

3That is why this approach is generally referred to as the balancing technique.
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Let us suppose the HSSP input has a SHS H with h vertices or more. It is not
difficult to reach the following expression for the probability pt (which stands for p as a
function of t) that, among t randomly chosen vertex pairs, at least one of them belongs to
a SHS of the input instance: pt ≥ 1− {1− [h(h− 1)]/[n(n− 1)]}t.

If, instead of calculating the probability pt, we fix pt at some desired value p =
1 − ε, we will be able to obtain the minimum integer value of ht (which stands for h as
a function of t) that satisfies the aforementioned inequality. It follows that ht is such that
the execution of t independent bias envelopments on randomly chosen pairs suffices to
find a SHS with probability at least p, in case there is some SHS with ht vertices or more:

ht =

⌊
1 +

√
1 + 4(n2 − n)(1− (1− p)1/t)

2

⌋
.

With a yes-biased Monte Carlo algorithm in sight, we must be able to find a SHS
with probability p in case any SHS exists, regardless of its size. As ht decreases with the
growth of t, a natural question is: how many random pairs have to be submitted to bias
envelopment in order to achieve that? Of course, it is the minimum integer t′ such that
ht′ = 2. Determining t′ comes from the equation above right away and we have

t′ =
ln(1− p)

ln
(
1− 2

n(n−1)

) = Θ(n2).

Now, since Θ(n2) bias envelopments would have to be performed and the time
complexity of each one of them is O(n2), an algorithm as such would apparently run
in worst-case O(n4) time—which is all the most undesirable, for there are deterministic
algorithms more efficient than that!

However, we show that, in order to find a SHS with probability p (under the hy-
pothesis that there exists one with ht vertices or more), the t-th bias envelopment can be
an incomplete one with stop parameter k = ht−1. Well, two are the possibilities regarding
the input: (i) there is a SHS with more than ht−1 vertices; or (ii) there is no SHS with
more than ht−1 vertices. If (i) is true, then no more than t − 1 bias envelopments would
even be necessary (by the definition of ht). If (ii) is the case, then bias envelopments (in
particular, the t-th) do not need to look for SHS’s bigger than ht−1 (by hypothesis). In
other words, the length of the incomplete envelopments decrease with ht.

That is the basis of our Monte Carlo (MC) HSSP algorithm, whose complexity
analysis, a bit trickier than the algorithm itself, shows it runs in worst-case O(n3) time.

5. The Harmonic Series algorithm
Still another algorithm for the HSSP, named Harmonic Series (HS) after its odd complex-
ity analysis, will run bias envelopments on the input vertex pairs employing the knowledge
accrued during earlier envelopments to speed up later ones. But it will achieve that in a
faster, peculiar way.

The HS algorithm proceeds as follows: the n(n − 1)/2 vertex pairs will be
submitted to bias envelopment in bn/2c turns with n pairs each. The first turn
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submits to bias envelopment all pairs of vertices whose indexes are one unit apart,
i.e. ({v1, v2}, {v2, v3}, . . . , {vn, v1}), the second turn submits pairs of vertices whose in-
dexes are two units apart, i.e. ({v1, v3}, {v2, v4}, . . . , {vn, v2}), and so on.

The point is, by the time the n bias envelopments of the t-th turn take place, it is
already known that no SHS exists containing a pair of vertices {vi, vj} such that i − j(
mod n) < t. This knowledge bounds the size of SHS’s to be searched for during this turn
at bn/tc. Consequently, all bias envelopments in the t-th turn can be interrupted by the
time the size of the candidate has exceeded the bn/tc threshold, hence incomplete bias
envelopments with stop parameter k = bn/tc are used.

Given the above, it is not difficult to foresee that the sum of all O(n) turns’ run-
ning times will give us the famous harmonic progression—which explains the log in the
O(n3 log n) bound for the overall complexity of the HS algorithm.

6. The Growing Cliques algorithm
It is clear that, in all HSSP algorithms based on the bias envelopment procedure, the
tighter the known upper bound for the size of searched-for SHS’s at a certain point, the
earlier all remaining envelopments will be allowed to stop. In this sense, the development
of an optimum envelopment-based algorithm has to cope with the question: what is the
best order in which vertex pairs may be submitted to bias envelopment?

Two vertices x, y are said to be enemies (of one another) if there is no SHS for that
input instance containing both x and y. The enemies graph of pair G1(V,E1), G2(V, E2)
is a graph GN(V, EN) such that (x, y) ∈ EN implies x and y are enemies.

Lemma 1. Given an enemies graph GN of pair (G1, G2), the cardinality of any SHS of
that pair is less than or equal to the cardinality of the maximum independent set4 of GN .

Given Lemma 1 and the fact that unsuccessful bias envelopments reveal new en-
mity relationships, our former question reads: starting from an initially empty enemies
graph GN and adding edge (x, y) to it for each pair {x, y} unsuccessfully bias-enveloped,
what is the envelopment order that keeps the size of the maximum independent set of GN

as small as possible throughout all successive edge-additions?

It is not difficult to see that there is no match to a strategy in which disjoint cliques
of increasing size are progressively assembled in an initially empty enemies graph, so that
the size of the minimum clique cover5 is always as small as possible.

And that is precisely what the Growing Cliques (GC) algorithm does: during the
first turn of bias envelopments, GN ’s current maximal cliques of size 1 are joint together,
pairwisely, assembling bn/2c cliques of size 2. Figure 4(a) shows the enemies graph after
the first GC turn. The maximum independent set of GN currently has O(n/2) vertices.
The second turn of Bias Envelopments joins together cliques of size 2, pairwisely, ending
up with O(n/4) cliques of size 4, and so on. (Figures 4(b) and 4(c) show the enemies
graph, respectively, at the end of the second and third turns of bias envelopments during
the GC algorithm.) This process goes on until either a bias envelopment has answered yes

4An independent set of a graph G is a vertex set where no two vertices are adjacent in G.
5We recall that a clique cover is a collection of maximal cliques such that each and every vertex of the

graph belongs to precisely one clique. Clearly, the number of maximal cliques in the minimum clique cover
is an upper bound for the size of the maximum independent set.
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Figure 4. Enemies graph after the first three turns of the GC algorithm

or all vertices in GN have been linked to one another in a big, single clique—yielding a
no answer for the HSSP instance in hand.

The concept of enemies also gave rise to both a fast O(n3) randomized Las Ve-
gas (LV) algorithm6 and an O

(
n3 log m

n

)
deterministic algorithm called Quick Fill (QF).

Though we do not show them here, they are thoroughly depicted and analyzed in the full
text [Sá 2006], where we refer the reader to.

7. The Pair Completion algorithm

The bias graph GB(VB, EB) of a pair of graphs G1(V, E1), G2(V,E2) is a digraph with
vertex set VB = {[x, y] | x, y ∈ V, x 6= y}. There are two outgoing edges from vertex
[x, y] to vertices [x, b] and [y, b] in GB iff b is a bias vertex of set {x, y} ⊂ V . Vertices
[x, y] and [y, x] in GB are the same.

We write L(X) to designate the subset of vertices v ∈ V which appear in the label
of some node in subgraph X ⊆ GB, referring to it as the labeling set of X and to its
elements as X’s labeling vertices. In other words, L(X) = {v | [v, z] ∈ X, for some z}.
A subgraph X ⊆ GB is said to be pair-closed iff x, y ∈ L(X) implies [x, y] ∈ X .

6A Las Vegas randomized algorithm is such that its answer is always correct, but its running time is a
random variable and evaluated as such in terms of its expectancy.
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Alg. Time complexity References
1 EE O(n4) [Cerioli et al. 1998]
2 BGC O(n24) [incorrect] [Tang et al. 2001, Sá and Figueiredo 2005]
3 2-P O(mM) [Sá 2003, Sá et al. 2006a]
4 BS O(n3,5) [Sá et al. 2004, Sá et al. 2006a]
5 MC O(n3) [rand.] [Sá et al. 2003, Sá et al. 2004, Sá et al. 2006a]
6 HS O(n3 log n) [Sá et al. 2004, Sá et al. 2006a]
7 GC O(n3 log n) [Sá et al. 2006a]
8 LV O(n3) [rand.] [Sá et al. 2006a]
9 QF O(n3 log m

n
) [Sá et al. 2006a]

10 PC O(nm log n) [Sá et al. 2006b]

Figure 5. Table of algorithms

Theorem 2. [Sá 2006, Sá et al. 2006b] A set H ⊂ V , |H| ≥ 2, is a SHS of (G1, G2) iff it
is the labeling set of a pair-closed sink7 in that instance’s bias graph.

The Pair Completion (PC) starts by generating the bias graph of the input instance
and determining its end strongly connected components (ESCC)8. Then, for each ESCC
S, it regards set L = L(S) as a potential SHS. Now, for each pair {x, y} in L, it checks
whether [x, y] reaches, in GB, an ESCC other than S. If that is the case, then one edge is
added from S to [x, y]—and S no longer constitutes an ESCC, whereupon the algorithm
restarts the process from another ESCC or stops with a no answer, if the bias graph has
become strongly connected itself9. If that is not the case, then no edges are added—
and the algorithm just puts into L all labeling vertices of the out-neighbors of [x, y] in
GB (in case they are not in L yet). If all pairs of vertices in L are investigated without
the addition of any new edge, the algorithm will have found the pair-closed sink S ′ =
{[u, v] ∈ VB | u, v ∈ L} and, by Theorem 2, will stop with a yes answer.

The overall time complexity of the Pair Completion algorithm is proved to be
O(nm log n), showing the algorithm’s sensibility to the number of edges of G1 and the
number of non-edges in G2—which is certainly appropriate for such a problem that is
invariant under taking the complements of the input graphs.

8. Overview of algorithms and publications

Figure 5 summarizes all HSSP algorithms known to date, their time-complexities and the
publications where they can be found. Except for the first three algorithms, all others
were developed and published during the research for the present thesis10.

7A digraph’s sink is an induced subgraph with no outgoing edges.
8A strongly connected component (SCC) is a maximal induced subgraph S where, for all x, y ∈ S,

there is a path from x to y. An ESCC is a SCC which is a sink. It is easy to show that a sink either is an
ESCC itself or it contains an ESCC.

9A strongly connected digraph does not contain any sinks.
10The Pair Completion algorithm in Information Processing Letters and the Algorithmica paper were

accepted for publication during the research period and published shortly thereafter.
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