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Abstract. Homogeneous sets have proved useful for the construction of graph
decomposition procedures. Sandwich graphs are obtained from two pre-defined
graphs which provide them with both mandatory and optional edges. Given such
a pair of graphs, the Homogeneous Set Sandwich Problem (HSSP) searches for
a sandwich graph which contains a homogeneous set. This thesis presents the
development of techniques for solving the HSSP and culminates in the correction
of the established upper bounds for its time complexity. Such results comprise
the description of thoroughly depicted counterexamples which prove the incor-
rectness of the (so far) best published HSSP algorithm, along with the proposal
of a new, faster algorithm.

1. Introduction

A homogeneous set is a non-trivial module of a graph, i.e. a non-unitary, proper subset
H of a graph’s vertices such that all vertices inH have the same neighborhood outside
H. Given two graphsG1(V,E1), G2(V, E2), the Homogeneous Set Sandwich Problem
(HSSP) asks whether there exists a sandwich graphGS(V, ES), with E1 ⊆ ES ⊆ E2,
which has a homogeneous set.

Sandwich-graph problems were first defined in the context of Computational
Biology as a relaxation of recognition problems. Their applications abound in
the literature [Golumbic et al., 1995, Golumbic, 1998, Golumbic and Wassermann, 1998,
Kaplan and Shamir, 1999, de Figueiredo et al., 2002, Dantas et al., 2002], whereas the
importance of homogeneous sets in the context of graph decomposition has been well
acknowledged, specially in the perfect graphs field [Lovász, 1972].

Notwithstanding the existence of linear-time algorithms for solving the recogni-
tion problem of finding homogeneous sets in a single graph, the HSSP cannot benefit from
them in any straightforward manner and still remains a subject for research.

The first polynomial-time algorithm for this problem was presented
in [Cerioli et al., 1998], setting its upper bound atO(n4). We refer to this algo-
rithm as theExhaustive Bias Envelopment Algorithm(EBE algorithm, for short). A
few years later, [Tang et al., 2001] introduced a brand new algorithm, based on a quite
beautiful idea, which would have largely decreased HSSP’s upper bound. In this thesis,
we show that this latter algorithm, which we refer to as theBias Graph Components
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Algorithm (BGC algorithm, for short), is unfortunately not correct. As a consequence,
the most efficient algorithm that correctly solves the HSSP would turn back to be the
former EBE algorithm presented in [Cerioli et al., 1998]. This thesis brings, however, a
faster algorithm, which establishes a new upper bound to the problem atO(m1n

2).

In Section 2, we summarize the EBE algorithm. In Section 3, we give a brief
description of the BGC algorithm and point out where its basic flaw lies. Finally, Section 4
introduces the new algorithm.

Throughout this paper, we denote the number of vertices in the input graphs byn
and the number of edges in graphGi by mi. Also,4i stands forGi’s maximum vertex
degree.

2. The Exhaustive Bias Envelopment algorithm

Let GS(V,ES) be a sandwich graph of graphsG1(V, E1), G2(V, E2). The edges inE1 are
calledmandatory edges, once each and every sandwich graph of(G1, G2) has to contain
them. On the other hand, the edgesnot in E2 are said to beforbidden edges, meaning that
no sandwich graph of(G1, G2) is allowed to contain them. A vertexb ∈ V is called abias
vertexof a vertex setS ⊆ V \ {b} if there exists at least one mandatory edge(b, v) ∈ E1

and at least one forbidden edge(b, w) /∈ E2, for somev, w ∈ S. The setB(S) contains
all bias vertices ofS and is thereby called thebias setof S.

Theorem 1. [Cerioli et al., 1998] The setS ⊆ V is a sandwich homogeneous set of a
pair (G1, G2) if and only if its bias setB(S) is the empty set.

The EBE algorithm starts by choosing a sandwich homogeneous setcandidate
{x, y}. Then it successively determines the candidate’s bias vertices and adds all of them
to the current candidate. We refer to this procedure asBias Envelopment. The Bias
Envelopment continues until either a candidate with an empty bias set has been found,
whereby the algorithm stops with anyesanswer, or else the candidate set has become
equal to the input vertex setV , in which case the algorithm restarts the process with
another initial pair of vertices. If no sandwich homogeneous set has been found by the
time all possible pairs have been investigated, the algorithm answersno. The worst-case
time complexity of this algorithm isO(n4).

3. The Bias Graph Components algorithm

The main idea of the BGC algorithm, presented in [Tang et al., 2001], is to use the
bias relation introduced in Section 2 to construct a directed graph, calledbias graph.
The bias graphGB(VB, EB) of a pair of graphsG1(V, E1), G2(V,E2) has vertex set
VB = {[x, y] | x, y ∈ V, x 6= y} and there are two outgoing edges from vertex[u, v] to
vertices[u,w] and[v, w] in GB if and only if vertexw is a bias vertex of vertex set{u, v}
with respect to the pair(G1, G2).

Once the bias graph has been constructed, the algorithm proceeds to finding all
its strongly connected components (SCC). Then it looks for anendstrongly connected
component (ESCC) among them, i.e. a SCC with no outgoing edges. If only one ESCC



Figure 1: Counterexample 1 (to Claim 2 [Tang et al., 2001])

is found and it embraces all input vertices (as part of its vertices’ labels), the algorithm
returnsno. Otherwise, the algorithm translates one of the bias graph’s ESCCs, say com-
ponentC, into the setH ⊂ V of input vertices that are used to labelC ’s vertices. In this
case it returnsyesandH, for H would allegedly be a sandwich homogeneous set. The
time complexity of the BGC algorithm is shown to beO(41n

2).

Claim 2. [Tang et al., 2001]The BGC algorithm correctly solves the HSSP.

To begin with, Figure 1(a) shows a simple refutation. It presents a pair of graphs
(G1, G2) that produce the bias graphGB(VB, EB) in Figure 1(b). The vertex setS ⊂ VB

on the left of the dashed line constitutes an ESCC. The setH = {1, 2, . . . , 7} ⊂ V that
labels the vertices inS, however, isnot a sandwich homogeneous set of(G1, G2).

By its turn, Figure 2 gives the pairG1(V,E1), G2(V,E2), which has sandwich
homogeneous setH = {1, 2, . . . , 9, 1′, 2′, . . . , 9′} (and no other). However, the BGC
algorithm would give it ano answer, for its one and only sandwich homogeneous set is
not associated with any ESCCs in its bias graph.



Figure 2: Counterexample 2 (to Claim 2 [Tang et al., 2001])

4. A newO(m1n
2) upper bound: The Two-Phase algorithm

Let GB(VB, EB) be the bias graph of input graphsG1(V, E1), G2(V,E2). A subset
K ⊆ VB is said to be apair-closed set if and only if there do not exist two ver-
tices x, y ∈ V , among those which labelK ’s vertices, such that vertex[x, y] is not
an element ofK. The setA = {[1, 2], [1, 3], [2, 3]} is a pair-closed set. The set
B = {[1, 2], [1, 3], [1, 4], [2, 3], [2, 4]} is not pair-closed, for vertices3 and4 appear in
the label of some vertices inB but [3, 4] /∈ B.

Theorem 3. A set H ⊂ V is a sandwich homogeneous set of graphs
G1(V,E1), G2(V, E2) if and only if the pair-closed setK = {[x, y] | x, y ∈ H} ⊂ VB

induce anendsubgraph in bias graphGB of (G1, G2).

Theorem 3 does not lead directly to an efficient algorithm for the HSSP, as there
is no quick means of finding pair-closed sets which induce end subgraphs. Corollary 4,
however, brings about the central inspiration for the algorithm that follows.

Corollary 4. If H ⊂ V is a sandwich homogeneous set of graphsG1(V, E1),
G2(V,E2), then either the subgraphGB〈K〉, induced by the pair-closed set
K = {[x, y] | x, y ∈ H} ⊂ VB in the bias graphGB(VB, EB) of (G1, G2), is itself an end
strongly connected component or else it contains, properly, some end strongly connected
component ofGB.

The first phase of the Two-Phase algorithm builds the bias graph of the input
instance and locates all its ESCCsGB〈Ci〉. Each of these ESCCs is then used to determine
a subsetHi of the input vertices such thatHi contains all vertices which appear in the
labels of the bias graph’s vertices that belong toGB〈Ci〉.

Its second phase runs the Bias Envelopment procedure on each of those subsetsHi

only (due to Corollary 4), returningyesand a sandwich homogeneous setH that contains



The Two-Phase algorithm (G1(V,E1), G2(V, E2))

1. Construct the bias graph GB of (G1, G2).
2. Find all end strongly connected component GB〈Ci〉 of GB.
3. Let Hi be the set of vertices in V that label the vertices in GB〈Ci〉.
4. For each set Hi ⊂ V do
4.1. H ← Hi.
4.2. Find the bias set B(H).
4.3. While H 6= V do
4.3.1. If B(H) = ∅ then return yes and H. End.
4.3.2. H ← H ∪B(H).
4.3.3. Update B(H).
5. Return no.

Figure 3: The Two-Phase algorithm

Hi, in case there exists one, orno in case none of the subsetsHi happen to be contained
in any sandwich homogeneous sets of the input instance. Notice that it clearly saves time
as compared to the EBE algorithm, which runs the Bias Envelopment procedure on all
vertex pairs of the input instance.

Figure 3 presents the pseudo-code for the Two-Phase algorithm, whose time com-
plexity isO (m1n

2).
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