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Abstract

A homogeneous set is a non-trivial, proper subset of a graph’s ver-
tices such that all its elements present exactly the same outer neigh-
borhood. Given two graphs, G1(V, E1), G2(V, E2), we consider the
problem of finding a sandwich graph Gs(V, ES), E1 ⊆ ES ⊆ E2, which
contains a homogeneous set, in case such a graph exists. This is called
the Homogeneous Set Sandwich Problem (HSSP). We give a simple
O(n3) Monte Carlo algorithm which is asymptotically more efficient
than all deterministic HSSP algorithms known so far.

1 Introduction

Given two graphs G1(V, E1), G2(V,E2) such that E1 ⊆ E2, a sandwich prob-
lem with input pair (G1, G2) consists in finding a sandwich graph Gs(V, ES),
E1 ⊆ ES ⊆ E2, which has a desired property Π [3]. In this paper, the
property Π we are interested in is the exhibition of a homogeneous set. A
homogeneous set H, in a graph G(V,E), is a subset of V such that (i)
1 < |H| < |V | and (ii) for all v ∈ V \ H, either (v, v′) ∈ E is true for
all v′ ∈ H or (v, v′) /∈ E is true for all v′ ∈ H. In other words, a homo-
geneous set H is a subset of V such that the outside-H neighborhood of
all vertices in H is the same and which also satisfies the necessary, above
mentioned size constraints. A sandwich homogeneous set of a pair (G1, G2)
is a homogeneous set for at least one among all possible sandwich graphs
for (G1, G2).

There are many algorithms which find homogeneous sets quickly in a
single graph. The most efficient one is due to McConnel and Spinrad [4]
and has O(|E|) time complexity.
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On the other hand, the known algorithms for the homogeneous set sand-
wich problem are far less efficient. The first polynomial time algorithm
was presented by Cerioli et al. [1] and has O(n4) time complexity (where
n = |V |). We refer to it as the Exhaustive Bias Envelopment algorithm (EBE
algorithm, for short), as in [2]. An O(∆n2) algorithm (where ∆ stands for
the maximum vertex degree in G1) has been found by Tang et al. [6], but
in [5, 2] it is proved incorrect. Although all efforts to correct Tang et al.’s
algorithm (referred to as the Bias Graph Components algorithm, in [2]) have
been in vain, some of its ideas were used, in [5, 2], to build a hybrid algo-
rithm, inspired by both [1] and [6]. This one has been called the Two-Phase
algorithm and currently sets the HSSP’s upper bounds at its time complex-
ity O(m1m2), where m1 and m2 respectively refer to the number of edges in
G1 and the number of edges not in G2. All these algorithms are nevertheless
deterministic.

In this paper, though, we present a probabilistic Monte Carlo algorithm
which solves this problem in O(n3) time. This time complexity is clearly
better than O(n4), which is the complexity of Sá et al.’s algorithm expressed
only as a function of n. When our algorithm answers yes, it presents a
valid sandwich homogeneous set. When our algorithm answers no, it is
possible that there is no sandwich homogeneous set for that input, but it
is also possible that the algorithm simply did not find any. To bound the
probability of giving an incorrect answer, we prove that our algorithm finds a
sandwich homogeneous set, in case there exists one, with probability greater
than p, for any given constant p, 0 < p < 1. This kind of algorithm is called
a yes-biased Monte Carlo algorithm.

2 The Witness Test

As our algorithm is strongly based on the EBE algorithm [1], we describe
it briefly. We define the bias set B(Hk) of a vertex subset Hk as the set of
vertices v /∈ Hk such that (v, vi) ∈ E1 and (v, vj) /∈ E2, for some vi, vj ∈ Hk.
These such vertices v are called bias vertices for the set Hk [6]. It is easy
to see that Hk, 1 < |Hk| < n, is a sandwich homogeneous set if and only
if B(Hk) = ∅. It is proved in [1] that any homogeneous set sandwich
containing the set of vertices Hk should also contain B(Hk).

Let us suppose we are given a vertex set H1 = {v1, v2} and want to know
whether there is a sandwich homogeneous set which contains H1. The EBE
algorithm successively computes Hk+1 = Hk ∪B(Hk) until either B(Hk) =
∅, whereby Hk is a sandwich homogeneous set and it answers yes, or |Hk|+
|B(Hk)| = n, when it states that there is no sandwich homogeneous set
containing {v1, v2}. This procedure, in which bias vertices are successively
added to a sandwich homogeneous set candidate, is called bias envelopment.

If there is a sandwich homogeneous set H which contains the pair of ver-
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tices {v1, v2}, we call {v1, v2} a witness. We refer to the algorithm described
in the previous paragraph as Witness Test. Using some appropriate data
structures, as described in [1], the Witness Test runs in O(n2) time. The
aim of those structures is to partition the set of vertices V into five auxiliary
sets H, B, A, N , D, whose consistency is dynamically maintained. The set
H is the set we referred to as Hk, i.e. the current sandwich homogeneous set
candidate. The set B is simply our already defined B(H). The set A is the
set of vertices v /∈ H ∪ B such that (v, v′) ∈ E1 for some v′ ∈ H and also
there is no v′′ ∈ H such that (v, v′′) /∈ E2. Analogously, the set N is the set
of vertices v /∈ H∪B such that (v, v′) /∈ E2 for some v′ ∈ H and also there is
no v′′ ∈ H such that (v, v′′) ∈ E1. Finally, the set D = V \ (H ∪B ∪A∪N).
At each step of the witness test, H ← H ∪B and all other sets are updated
accordingly in O(n|B|) time.

The EBE algorithm tries to find a witness exhaustively. It runs the
Witness Test on all n(n − 1)/2 pairs of the input graphs’ vertices, in the
worst case. Thus, the time complexity of the EBE algorithm is O(n4).

Our algorithm is based on a variation of the Witness Test, which we call
Incomplete Witness Test. The input of the Incomplete Witness Test is a
pair of vertices {v1, v2} and a parameter h′ < n. The only change in the
incomplete version of the witness test is that, when |Hk| + |B(Hk)| > h′,
the test stops prematurely and answers no. Notice that a no answer from
the Incomplete Witness Test with parameter h′ means that {v1, v2} is not
contained in any homogeneous set of size at most h′. Using the same data
structures as in [1], the Incomplete Witness Test runs in O(nh′) time.

3 The Monte Carlo Algorithm

In order to gather some intuition, let us suppose the input has a sandwich
homogeneous set H with h vertices or more. If we choose a random pair
of distinct vertices {v1, v2}, the probability that {v1, v2} is a witness is at
least q = h(h − 1)/n(n − 1). If somehow we know there is a “rather big”
sandwich homogeneous set, we can expect it to be quite easy to find a
witness, for many pairs of vertices are witnesses in this case. By applying
the Witness Test on a pair of vertices that happens to be a witness, the
proof of completeness of the bias envelopment procedure [1] assures we will
find a sandwich homogeneous set that contains it. If we run the Witness
Test on t independent random pairs of vertices, the probability that we find
a homogeneous set is at least 1−(1−q)t. This approach leads to an efficient
algorithm when there is a “rather big” homogeneous set sandwich.

On the other hand, suppose the input has a “rather small” homogeneous
set sandwich H, with h vertices, where h is now small compared to the size of
the input. We can run the Incomplete Witness Test with parameter h′ = h
on every pair of vertices. The total time to find a sandwich homogeneous
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set, in case one exists, will be O(n3h), so that this deterministic algorithm
is efficient when h is “small”.

Now we can describe an efficient algorithm which is based neither on
assumptions about the size of any sandwich homogeneous sets nor even on
their existence. This algorithm is a Monte Carlo algorithm which gives the
correct answer with probability p.

Our algorithm’s idea is to run several Incomplete Witness Tests on ran-
dom witness candidates (pairs of vertices), in such a way that any desired
probability of finding a sandwich homogeneous set, in case there exists one,
can be achieved. At each iteration we run the Incomplete Witness Test with
parameter h′ on a random pair of vertices and either the algorithm succeeds
in finding a sandwich homogeneous set or else it aborts the current test
whenever the number of vertices in our sandwich homogeneous set candi-
date exceeds (due to bias envelopment) the parameter h′. The parameter h′

is initially set to h′1 = n− 1, as the first iteration corresponds to a complete
Witness Test, and is progressively decreased along the iterations until it be-
comes less than 2 (the minimum size allowed for a homogeneous set). This
approach clearly saves time compared to running complete Witness Tests on
all possible witnesses, as in the EBE algorithm.

This continuous decrease in the parameter h′ has to be well controlled,
though, in order to maintain, after each iteration t, the probability of having
found a sandwich homogeneous set (in case there exists one with h′t+1 6 h′t
vertices or more) not less than the predefined p. We accomplish this by
carefully calculating each h′t+1, bearing in mind that all t previous candidates
{v1, v2}, which have not led to the discovery of any sandwich homogeneous
sets (by the time they were the starting set), also count for the number
of witness candidates that are known not to be contained in any sandwich
homogeneous sets with up to h′t vertices. In other words, by the end of the
t-th iteration the algorithm has already tested t random pairs, none of them
contained in any sandwich homogeneous sets with up to h′t vertices. This
number (t) of already tested random pairs is crucial for us to establish the
correct relationship between p, the probability of having found a sandwich
homogeneous set in case there exists any with at least h′t+1 ≤ h′t vertices,
and the next parameter h′t+1 itself. By fixing p, we calculate h′t+1.

The probability that a random pair is not contained in any sandwich ho-
mogeneous sets with at least h vertices is at most q = 1− h(h− 1)/n(n− 1).
If we choose t independent random pairs of vertices, the probability that
none of these pairs is contained in any sandwich homogeneous set of size h
is at most qt. Thus, we calculate the value of h′t+1 after each iteration t as
follows:

p = 1−
(

1− h(h− 1)
n(n− 1)

)t

. (1)
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With some simple manipulations, we have:

h2 − h− (n2 − n)(1− (1− p)1/t) = 0. (2)

The value of h′t+1 after each iteration t must be an integer value corre-
sponding to the maximum size of a sandwich homogeneous set that needs
to be searched for at iteration t + 1. Consequently we can set h′t+1 = bhc.
Solving the second-degree equation 2, we can set h′t+1 to

h′t+1 =

⌊
1 +

√
1 + 4(n2 − n)(1− (1− p)1/t)

2

⌋
. (3)

In order to illustrate the algorithm by means of a step-by-step apprecia-
tion, let us take a pair (G1, G2) as our HSSP input instance. The algorithm
starts by choosing a random pair of vertices {v1, v2} for the first iteration.
Then, it executes the Incomplete Witness Test with parameter h′1 = n− 1,
which is equivalent to the (complete) Witness Test. Suppose it stopped
without finding any sandwich homogeneous set. What we do want now is
that, after we have set the value for the next parameter h′2, we are able to
say that the previous iteration sufficed for the algorithm to have found a
sandwich homogeneous set, in case there is one with h′2 vertices or more,
with probability at least p. So far we know that one random pair of vertices
is not contained in any sandwich homogeneous sets (with up to h′1 = n− 1
vertices). The following relation allows us to determine the minimum integer
h′2 that achieves it, had some predefined p been given:

p > h′2(h
′
2 − 1)

n(n− 1)
.

If there is a sandwich homogeneous set with at least h2 vertices, the
first iteration is enough to find one with probability at least p, and here
lies the algorithm’s main point: further iterations will not have to look for
sandwich homogeneous sets with more than h2 vertices, for it has already
been granted that sandwich homogeneous sets with as many vertices (h2 or
more) would already have been found by the algorithm with probability not
less than p. Indeed, this idea applies to every iteration t, when no sandwich
homogeneous set with more than h′t needs to be searched for. In other words,
this is what makes the complete Witness Tests redundant for our purposes,
allowing the incomplete version to be used instead.

The second iteration begins with a new, randomly chosen witness candi-
date. This iteration, as we have seen, does not need to expand the initial set,
by means of bias envelopment, until it holds all n vertices, for it has been
granted that a sandwich homogeneous set with h′2 or more vertices would
have already been found with probability at least p, so that this (second)
iteration is permitted to abort whenever the candidate set has more than
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HomogeneousSetSandwich (V, E1, E2, p)

1. h′ ← |V | − 1
2. t ← 0
3. while h′ ≥ 2
3.1. (v1, v2) ← random pair of distinct vertices of V
3.2. if IncompleteWitnessTest (V, E1, E2, v1, v2, h

′) = yes
3.2.1. return yes
3.3. t ← t + 1
3.4. h′ ← b(1 +

√
1 + 4(|V |2 − |V |)(1− (1− p)1/t))/2c

4. return no

Figure 1: Monte Carlo algorithm for the homogeneous set sandwich.

h′2 vertices. If no sandwich homogeneous set is found during this iteration,
we obtain h′3 from the relation below:

p ≥ 1− (1− h′3(h
′
3 − 1)

n(n− 1)
)2.

On further iterations, we just have to calculate each h′ the same way, as
equation 3 allows us to.

If no homogeneous set sandwich has yet been found whenever h′t becomes
less than 2, the algorithm stops and returns no. The pseudo-code for this
algorithm is in figure 1.

4 Complexity Analysis

The first iteration of the algorithm runs the complete Witness Test in O(n2)
time [1]. (Actually, a more precise bound is given by O(m1+m2) [2], but, as
the complexities of the Incomplete Witness Tests do not benefit at all from
having edge quantities in their analysis, we prefer to write time bounds only
as functions of n, however.) The remaining iterations take O(nh′) time each.
To analyze the time complexity of the algorithm, we have to calculate

t′−1∑

t=1

O(nh′t+1) =
t′−1∑

t=1

O(nh),

where t′ is the maximum number of iterations.
The parameter h′t+1 = bhc of the incomplete witness test in iteration

t + 1 is defined by equation 1. To calculate t = t′, we replace h for 2 and
have
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(
1− 2

n(n− 1)

)t′

= 1− p, and finally

t′ =
ln(1− p)

ln
(
1− 2

n(n−1)

) .

For 0 < x < 1, it is known that

ln(1− x) = −x− x2

2
− x3

3
− · · · .

Consequently,

t′ =
ln(1− p)

− 2
n(n−1) − 1

Θ(n4)

= Θ(n2).

Now, we will show that q = h(h− 1)/n(n− 1) ≥ h2/2n2. This result is
useful to simplify some calculations. We have

n

n− 1
· h− 1

h
· h2

n2
=

h(h− 1)
n(n− 1)

, and

h− 1
h

· h2

n2
≤ h(h− 1)

n(n− 1)
.

Since h ≥ 2,

h2

2n2
≤ h(h− 1)

n(n− 1)
= q.

To calculate the total time complexity, we replace h(h− 1)/n(n− 1) for
h2/2n2 in equation 1, and have

(
1− h2

2n2

)t

≥ 1− p,

h2

2n2
≤ 1− (1− p)1/t, and

h ≤ Θ(n)
√

1− (1− p)1/t.

It is well known that

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · .

Consequently, for x > 1,

e1/x = 1 + 1/Θ(x).
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Using this approximation, we have

h ≤ Θ(n)
√

1− (1 + 1/Θ(t)) = Θ(n)/Θ(
√

t).

The total time complexity of the algorithm is

Θ(n2)∑

t=1

O
(
nh(t)

)
=

Θ(n2)∑

t=1

O(n2)
O(
√

t)
= O(n2)

Θ(n2)∑

t=1

1/O(
√

t).

Using elementary calculus, we have

Θ(n2)∑

t=1

1/O(
√

t) = O(n).

Consequently, the total time complexity of the algorithm is O(n3).

5 Conclusion

In this article, we presented a simple O(n3) yes-biased Monte Carlo algo-
rithm for the Homogeneous Set Sandwich Problem. Considering that Tang
et al.’s O(n3) algorithm was proved incorrect, the best deterministic algo-
rithms for this problem are O(n4), if we express time complexity only as a
function of n.

A natural step, after having developed such a Monte Carlo algorithm,
is often the development of a related Las Vegas algorithm, i.e. an algorithm
which always gives the right answer in some expected polynomial time.
Unfortunately, we do not know of any short certificate for the non-existence
of sandwich homogeneous sets in some given HSSP instance, which surely
complicates matters and suggests a little more research on this.
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