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Abstract

We exploit multiple-choice hashing to create a concurrent hashing
scheme with O(1) worst-case time for lookup, insert, update and remove
operations, an eventually consistent hash map that does not use any kind
of synchronization for thread-safety. It works particularly well in scenarios
with a single writer and multiple reader threads, significantly outperform-
ing popular solutions such as ConcurrentHashMap (Java) and Intel TBB
concurrent hash map (C++) in heavily concurrent stress test scenarios.
The price to pay is a non-zero probability that an insertion might fail,
which can be made small enough, though, to suit all imaginable applica-
tions.

1 Introduction

Hashing-based data structures have enormous importance in computing, star-
ring in a number of efficient algorithms for a variety of problems [3, 4, 7, 12, 19].
The basic intent consists of storing keys (unique identifiers), sometimes mapped
to values, to be retrieved at some later time. Dictionary operations are made ef-
ficient by determining the position (bucket) in an underlying array (table) where
the key (and its associated value object, if any) will be stored as a function of
the key itself.

Not too long ago, advances in computer hardware usually meant advances
in clock speed, so all existing software would speed up by itself over time. In
recent times, manufacturers have been leaning towards architectures with mul-
tiple communicating processors, increasing the ability to execute parallel tasks
first and foremost, with only modest increases in clock speed. Those systems
are called shared-memory multiprocessors, or multicores [9], where multiple con-
current threads must coordinate their operations on some shared memory.

The traditional way to implement thread-safe data structures (structures
that may be accessed by concurrent threads without entering an inconsistent
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state) is via mutual exclusion, where only one thread at a time is allowed to
operate on the structure. However, such blocking implementations will not
always suit certain systems [8] where a lock-free or wait-free behavior may be
of utmost importance [9].

Formally, a shared data structure is lock-free if it guarantees that infinitely
often some thread completes its task within a finite number of steps. A shared
data structure is wait-free if it satisfies a stronger condition, namely that each
thread completes its execution in a finite number of steps.

An efficient thread-safe map implementation is Java’s lock-based Concurren-
tHashMap [14]. Instead of locking the entire map, it uses one lock per bucket
or subset of buckets. It is designed to optimize lookups. Writer threads may
update the hash map concurrently, and lookups may be executed without using
locks.

The Intel Threading Building Blocks library (TBB) [11] provides the con-
current hash map class, quite popular in the C++ community. It resolves hash
collisions by allocating linked lists for each buckets, and employs a lock per
bucket to maximize concurrent execution.

The hash table in [16] is a high-performance lock-free scheme that resolves
collisions via linked lists. It can perform resizes to grow or shrink the table
size when needed. However, after a first resize is performed, the average time
complexity of the operations will no longer be a constant function of the table
size [16, 18].

The work in [18] presents another high-performance lock-free hash table that
enforces the average constant time complexity of operations after resizes.

A lock-based concurrent cuckoo hashing is found in [9]. It improves concur-
rency by trading space; thus, its space overhead is higher than the basic cuckoo
hashing [5].

The optimistic cuckoo hashing [5] has great memory efficiency. It was de-
signed for scenarios where lookups dominate, with only one writer allowed at a
time. It was later improved by [15] to support multiple writers, using the con-
current writer approach from the concurrent cuckoo hashing introduced in [9].

The hopscotch hashing [10] is designed for both sequential and concurrent
use, with O(1) worst-case lookup time. It combines the advantages of cuckoo
hashing, chained hashing and linear probing. Like cuckoo hashing, an insertion
may fail and a full rehash is required; thus, the worst-case insertion time is Ω(n).

In [13], Laborde, Feldman and Dechev present an ingenious wait-free hash
map with constant worst-case time for all basic operations. It consists of a
multi-level array, using multiple tables structured as a tree. It avoids global
resizing by allocating new arrays when necessary. A drawback is that there is
no freedom to choose hash functions, much like in a direct-addressing solution.
Indeed, the hash value is, so to say, the key itself, seen as a bit sequence that
uniquely determines a path from the tree root down to a leaf node where the key
will be effectively stored, in a way that is very similar to how a trie operates [6].
Because there is no arbitrarily chosen hash function, its deterministic behavior is
always known beforehand, and a malicious adversary may choose keys that will
lead its operations to their very worst case (yielding bigger multiplicative factors,
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but still within constant time). The number of collisions may also happen to be
(intentionally) maximized so that Θ(n) arrays are allocated, yielding a higher
memory overhead. Finally, the worst-case performance of all basic operations
is affected when larger keys are used, since the maximum depth of the tree
increases with the size of the keys (again, the worst-case time is still constant1,
albeit with possibly somewhat bigger multiplicative factors).

Our contribution. We propose the wait-free monkey hashing scheme for sce-
narios with a single writer and multiple reader threads, where traditional, non-
thread-safe schemes invariably incur in concurrency issues. Monkey hashing is
a simpler alternative to the more involved, thread-safe, wait-free scheme in [13].
The monkey hashing is an actual hashing scheme, in the sense that one can
pick whatever hash function (or rather hash functions, plural) they please. It
does not use locks or any other kind of synchronization, and every operation
runs in O(1) worst-case time.2 The price to pay is a (small) probability that an
insertion might fail. As we shall see, we can make the failure probability small
enough even to the most demanding applications.

In Section 2, we introduce the novel monkey hashing scheme. In Section 3,
we discuss the eventual consistency of our construct. In Section 4, we obtain
an upper bound for the failure probability of the insertion and argue that it
can be made negligible without touching the asymptotic efficiency of either
time or space. In Section 5, we present experimental results that compare the
proposed scheme with Java’s ConcurrentHashMap [14], with the TBB concur-
rent hash map [11] and with Laborde et al.’s wait-free hash map [13].

2 Monkey Hashing

Monkey hashing (MH) is a thread-safe hashing scheme that does not use locks
or any other kind of synchronization, requiring only that single-word read and
write operations are atomic. It consists of a single hash table and k ≥ 1 hash
functions, meaning multiple alternative locations for each key in the same table.
Unlike cuckoo hashing, elements will never be evicted from where they first
landed, so new keys being inserted must always find an unoccupied spot to call
their own.3

Like the concurrent cuckoo hashing in [5], our hashing scheme is specially
tailored for scenarios with a single writer and multiple reader threads, though
it certainly works just fine even in single-thread applications.

1More precisely, it is proportional to the key size, much like the computation of typical
hash functions. It can be considered O(1), though, assuming the maximum key length is a
(typically small) constant.

2Under the same fixed maximum key length assumption (see previous note).
3The name stems from the analogy to a monkey that jumps along branches of a tree until

it finds a vacant one to rest. Some cultures even have popular sayings in the likes of “every
monkey to their own branch”, meaning “every jack to his trade”.

3



The monkey hashing can be implemented as a hash map, that is, it can store
key-value pairs, even though a pair consists of two memory words and cannot
be read atomically. Of course it can also be implemented as a hash set, where
only keys are stored.

It is required that one knows beforehand the maximum number of entries
that may ever coexist in the map (i.e., its maximum capacity), since memory is
pre-allocated to enforce the intended load factor without the need of rehashes.4

The k hash functions may be obtained from a universal class [2]. Such
functions work just as well as idealized uniform hash functions do on average [17].

To look up some key x, we follow the sequence of positions h1(x), h2(x), . . . ,
hk′ in the underlying array T (i.e., the table) until we have either found x or
reached the maximum number of hash functions that were actually called for
by any insert operation, denoted by k′. Such a maximum in use value k′ is
dynamically kept track of. The pseudo-code of the lookup algorithm is shown
in Figure 1.

Lookup(x)
1. for i = 1, 2, . . . , k′

2. if T [hi(x)] = x
3. return true
4. return false

Figure 1: The monkey hashing lookup algorithm

When a key x is inserted, we insert x in the first position in the hash table
that is not occupied along that same sequence h1(x), h2(x), . . . , up to hk(x),
where k is the aforementioned number of available hash functions, i.e., the
maximum allowed number of insertion attempts for a given key. The insertion
fails if all k positions are occupied. The pseudo-code in Figure 2 shows the
insertion algorithm, where an empty position is denoted by ⊥. Note that we
use a mapping A of all positive integers i ∈ [1, k′] onto the number of keys
that required i hash functions during its insertion. Such a mapping will also
be updated by the remove operation, and is used ultimately to keep track of
k′ ≤ k.

To remove a key, we first look it up in the MH structure. If it is found,
then, along with removing it from the table, we also make sure to remove its
contribution to the mapping A of hash function counts. Figure 3 gives the
pseudo-code for the remove operation.

Since there are no keys ever being moved and no collision lists to maintain,
the threads accessing a MH structure are free to execute all basic operations
without any kind of synchronization. Hence, for a constant number k of hash

4In the experiments of Section 5, Java’s ConcurrentHashMap and Intel’s TBB concur-
rent hash map are also pre-allocated to avoid resizes (something they do support), thus en-
suring a fair comparison.
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Insert(x)
1. if Lookup(x)
2. return
3. for i = 1, 2, . . . , k
4. if T [hi(x)] = ⊥
5. T [hi(x)]← x
6. A[i]← A[i] + 1 // one more key requiring i functions
7. k′ ← max{k′, i} // k′ may have changed
8. return
9. fail

Figure 2: The monkey hashing insertion algorithm

Remove(x)
1. for i = 1, 2, . . . , k′

2. p← hi(x)
3. if T [p] = x
4. T [p]← ⊥
5. A[i]← A[i]− 1 // one less key requiring i functions
6. if A[i] = 0 and k′ = i // must update k′

7. for j = i− 1, i− 2, . . . , 1
8. if A[j] > 0
9. k′ ← j
10. return
11. k′ ← 0 // empty table
12. fail // not found

Figure 3: The monkey hashing removal algorithm

functions, the operations are all wait-free, bounded by O(k) = O(1) steps.
We can iterate through the entries in thread-safe fashion by traversing the

underlying array while skipping empty positions. Insertions and deletions done
while an iteration is taking place might not be immediately seen, as discussed
in Section 3, something usually referred to as eventual consistency, which is
inherent to—and all the most tolerable by—most multi-threaded applications.

3 Thread-Safety and Eventual Consistency

The writer thread and the reader threads execute their operations concurrently,
ignoring synchronization issues.

An entry with key x that has just been inserted may not be seen immediately
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thereafter by all reading threads. A reading thread might have started to look
it up before it was inserted, and may have just checked position hj(x). Then,
the writer thread inserts the entry in that same position and the reader thread
resumes its operation from position hj+1(x) and fails to find the key. After it
is first seen, though, never (again) should it fail to be successfully retrieved by
each reading thread. Such a behavior—when no more updates are done, all
readers will eventually read the latest written data—is commonly referred to as
eventual consistency, and is inherent to many modern solutions, from distributed
databases to event stores to the Internet Domain Name System (DNS) [1].

Deleting a key does not cause any trouble to the lookup operations in the
reader threads: it takes a single atomic step to erase the key, be it of a primitive
data type or an object reference (setting it to a null value). In the latter case,
if the reference was already retrieved, and then removed shortly thereafter, that
object will still be accessible to the reader, even if the writer replaces that
reference with a null or some other reference.

When using MH to implement maps, the value, in each key-value pair, should
be written first (and deleted last) to avoid the retrieval of a key without the in-
tended corresponding value. Moreover, when storing key-value pairs, a mapped
value that is changed may not be immediately seen by all reading threads. In-
deed, a reader thread might have just retrieved the reference of a value, when
the writer thread replaces it with a reference to another value. Hence, the reader
thread will actually have accessed the previous value. This is an expected, harm-
less race condition, and the outcome would have been the same had the update
operation started after the completion of the read operation. Note, though, that
reading partially updated entries must be avoided by enforcing that the data
types of both key and value have atomic writes (which is the case, for example,
in modern Java, for pointers and wrappers of primitive types).

Note that key-value pairs will probably be implemented as objects allocated
in the random-access memory. Each position in the underlying array (i.e., the
table) stores a reference to one of those objects (see Figures 4(a) and 4(b)).
To improve performance, we may want to reuse the referenced object when
removing a key-value pair. This avoids the overhead of dynamically freeing
and (re-)allocating memory for new entries, as well as reducing the garbage
collection burden, when applicable. We can achieve that by logically erasing
both the key and the value of the existing entry without actually freeing the
key-value object. However, after a reader thread retrieves an entry, the writer
thread might overwrite the fields in that reused key-value object pair (after, say,
a logical deletion followed by an insertion), and thus the reader thread might
end up reading the value associated with the new key. When the key can be
inferred from the value object (e.g., the key is some user id and the value is some
User object, containing, among other data attributes, the user id itself), we can
avoid this concurrency issue altogether by checking that the retrieved value does
indeed correspond to the informed key. This can be done by providing MH with
a function that, given a value object, returns its (unique) key. If the key obtained
from the value does not correspond to the search key, then a deletion surely took
place in the meantime and a null would be returned instead; otherwise return
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the retrieved, verified value object. In case such a verification function is not
provided, the MH scheme will still work, albeit not reusing key-value objects,
therefore actually freeing such objects during deletions, and reallocating a new
key-value object from scratch at every insertion.

In case only keys are stored in the scheme (i.e., when implementing sets, not
maps), keys (or, alternatively, references to key objects) may be written directly
to the underlying array (see Figures 4(c) and 4(d)).

(a) (b) (c) (d)

Figure 4: Some possible MH setups: (a) hash map for objects; (b) hash map
for primitive types; (c) hash set for objects; (d) hash set for primitive types. K,
V, UA and KVOP indicate, respectively, the stored key, the mapped value, the
underlying array (table), and the key-value object pair.

4 Insertion Failure Probability

The insertion method is strictly speaking a randomized algorithm with a proba-
bility of failure. We can make such a probability be so small that the MH would
work just as reliably as any deterministic algorithm would, in practice.

The upper bound on the probability that an insertion might fail decreases
exponentially with the predefined maximum number of hash functions. Say
we set 50 as the maximum number of hash functions, as we did in the tests
depicted in Section 5, and m = 2n as the size of the hash table, where n is
the maximum number of entries stored at any given time. Because the load
factor never exceeds 1/2, when inserting key x the probability that position
hi(x) is occupied is at most 1/2 for all i ∈ {1, ..., 50}. Thus, the probability
that the insertion of x fails is at most 2−50. The number of insertions until the
first failure occurs is a geometric random variable with expectation at least 250,
which is more than one quadrillion. If we perform one million insertions (and
one million deletions, keeping the table at its maximum capacity) every second,
non-stop, this means we would expect to see our first failure in 35.7 years.5 If we
increase the number of functions very slightly, from 50 to just 52, the expected
time before the first failure increases to nearly one and a half century.

5To keep things in perspective, Twitter usually registers an average of 6000 new tweets per
second, worldwide, at the time of writing this paper, with a registered peak of 143, 199 tweets
per second in August, 2020.

7



5 Experiments

We have conducted experiments to compare the proposed MH scheme against
existing, well-known solutions. All experiments were conducted on a Linux Mint
20.3 64-bit machine, with a multicore Intel(R) Core(TM) i3-2100 CPU with 4
cores of 3.10 GHz, and with 3.7 GB of RAM memory.

First, we compared a MH implementation in Java against Java’s inbuilt
thread-safe hash map solution, the ConcurrentHashMap (CHM), and against
Java’s ConcurrentSkipListMap (CSLM), a non-hash-based map whose thread-
safety is known to be very well implemented, to the extent that it outperforms
both the CHM in scenarios with a big number of threads and Java’s TreeMap
(a non-thread-safe red-black tree) in single-threaded scenarios. Monkey hashing
significantly outperformed CHM in all multi-thread test scenarios. It also out-
performed CSLM when the number of threads was the same or smaller than the
number of CPU cores.6 Second, we compared a C++ implementation of MH
against Intel’s TBB concurrent hash map.7 Again, MH performed significantly
better.

Figures 5 and 6 show the average running time of a sequence of read and
write operations as a function of the number of concurrent threads.

Figure 5: 25,000 inserted items. Figure 6: 100,000 inserted items.

Our scenario consists of a single writer thread and multiple reader threads.
The number of items inserted in the map is 25,000 in the experiment of Figure
5, and 100,000 in the experiment of Figure 6. The target load factor was 1/2
in all experiments. The maximum capacity and the load factor are provided as
constructor arguments to pre-allocate the table size, thus avoiding resizes. This
was done to MH and CHM schemes all the same. The number of concurrent
threads varied from 2 to 16 (always one writer, several readers).

When we increased the number of threads, we also increased the total
amount of work, because each reading thread iterates through the entries 2,000
times. The writer thread inserts 25,000 or 100,000 items and overwrites the

6Source code: https://github.com/judismar/MonkeyHashMapJavaExperiments
7Source code: https://github.com/judismar/MonkeyCppExperimentsAgainstTBB
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values of all these items 1,000 times. This sequence of operations was repeated
4 times to obtain the average total running time.

In Figures 7 and 8, we compare the monkey hashing against the TBB con-
current hash map8 in C++. They show the average running time of a sequence
of read and write operations as a function of the number of concurrent threads.
The monkey hashing significantly outperforms the TBB concurrent hash map.

Figure 7: 25,000 inserted items. Figure 8: 100,000 inserted items.

In this scenario of a single writer thread and multiple reader threads, the
number of items inserted by the writer thread is 25,000 in the experiment of
Figure 7 and 100,000 in the experiment of Figure 8. The intended load factor
is 1/2. The maximum capacity and the load factor are provided as construc-
tor arguments of the monkey hashing to pre-allocate the table size. Twice the
maximum capacity is provided as the constructor argument of the TBB concur-
rent hash map to pre-allocate the table size, thus avoiding resizes. The number
of threads running concurrently is varied from 2 to 16.

When we increased the number of threads, the total amount of work also
increased, because each reading thread iterates through the entries a fixed 1,000
times. The writer thread inserts 25,000, or 100,000 items. This sequence of
operations is repeated 5 times to obtain the average total running time.

Figures 9 and 10 show the average running time of a sequence of read and
write operations as a function of the number of concurrent threads in order to
compare the monkey hashing with the wait-free hash map in [13]9, written in
C++. MH ties with Laborde et al.’s hash map.

The scenario of the simulation in Figures 9 and 10 consists of a single writer
thread and multiple reader threads. In the experiment of Figure 9, the writer
thread inserts 25,000 items, and each reader thread performs 25,000 get opera-
tions. In the experiment of Figure 10, the writer thread inserts 100,000 items,

8Source code: https://github.com/judismar/MonkeyCppExperimentsAgainstTBB
9Source code: https://github.com/judismar/MonkeyHashMapCppExperiments. The code

of the wait-free hash map in [13] is from https://github.com/AgamAgarwal/wait-free-
extensible-hash-map.
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Figure 9: 25,000 inserted items. Figure 10: 100,000 inserted items.

and each reader thread performs 100,000 get operations. The intended load fac-
tor for MH was 1/2, and the maximum capacity and the load factor were again
provided as constructor arguments to pre-allocate the tables. The number of
threads running concurrently varied from 2 to 16. The writer thread inserts
25,000 or 100,000 items. This sequence of operations was repeated 5 times to
obtain the average total running time.

6 Conclusion

We proposed a novel thread-safe hashing scheme that is simple to understand
and to implement. High concurrent performance is attained by dispensing with
locks or other forms of thread synchronization, for the price of a strictly positive
probability of failure during an insertion operation, a probability which can be
made negligible for all intents and purposes. In the quite common scenario of a
single writer and multiple readers, for which our contribution is particularly well-
suited, our scheme consistently outperforms well-known, widely used solutions
such as Java’s ConcurrentHashMap and C++ Intel TBB concurrent hash map,
while not presenting the drawbacks of previous works with roughly the same
objectives.

We believe it should be possible to devise a variant of the monkey hash set
— one which uses CAS during insertions and removals — that allows multiple
writers while still purposefully ignoring mutual exclusion.

We thank Paulo Casaes and Juan Lopes for the insightful discussions.
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