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Abstract

The Radon number of a graph is the minimum integer r such that all sets of at
least r vertices of the graph can be partitioned into two subsets whose convex hulls
intersect. We present a near-linear O(d log d) time algorithm to calculate the Radon
number of d-dimensional grids in the geodetic convexity. To date, no polynomial
time algorithm was known for this problem.

1 Introduction

The concept of convexity in graphs was borrowed from its well-known geomet-
ric counterpart, where a subset S of the Euclidean space is convex if and only
if, for every two points x, y ∈ S, the interval of x, y, consisting of the straight
segment connecting x to y, is entirely contained in S. Formally, a convexity
space consists of a pair (V, C), where V is a set — the ground set — and C is
a collection of subsets of V — the convex sets — such that C contains both
V and the empty set, and C is closed under arbitrary intersections.



Several types of graph convexities have been considered in the literature,
with applications ranging from statistical physics and distributed computing
to marketing and social networks. In the geodetic convexity, a subset S of the
vertices of a graph G is convex if and only if, for every two vertices x, y ∈ S,
all vertices in a shortest path between x and y in G also belong to S.

Given a subset V ′ of the ground set V of some convexity space, the convex
hull of V ′, denoted H(V ′), is the smallest convex subset of V containing V ′.
Nearly one hundred years ago, Johann Radon formulated a celebrated theorem
stating that every every set with at least d+2 points in Rd can be partitioned
into two subsets whose convex hulls intersect [5]. A natural question concerns
what happens when we consider some general ground set V instead of Rd.
The Radon number of V is defined as the minimum integer r such that every
subset of V with at least r elements can be partitioned in two sets whose
convex hulls intersect, and it has been used to model a number of problems
that occur, for instance, in social networks.

A simple reduction from the maximum clique problem can be used to prove
the NP-hardness of finding the Radon number of a graph in the geodetic con-
vexity, hence a natural task is to determine such parameter for particular
graph classes. We are interested in the Cartesian products of d paths of ar-
bitrary sizes (i.e. d-dimensional grids). While a lot of insight on the problem
was gained in [1], determining the exact Radon number of such graphs in poly-
nomial time was still outstanding. We introduce an algorithm that achieves
that in near-linear O(d log d) time.

2 The basics

If R is a subset of vertices of graph G, then a partition R = R1 ∪ R2 is a
Radon partition if H(R1) ∩H(R2) 6= ∅. A set with no Radon partitions is an
anti-Radon set. The Radon number of a graph G is therefore the size of the
maximum anti-Radon set of G plus one.

A grid G = Grid(n1, . . . , nd) is the Cartesian product of d paths Pn1 ×
Pn2 × . . . × Pnd

. If R is a subset of the vertices of a grid, then H(R) equals
the Cartesian product of the 1-dimensional convex hulls of the d projections
of R onto the different dimensions ρj, for j ∈ [d] := {1, . . . , d}.

Having observed that, one can check whether a partition R = R1 ∪ R2 is
a Radon partition by inspecting the projections of R onto each dimension. If,
for some j ∈ [d], the greatest (smallest) coordinate of R1 on ρj is less (greater)
than the smallest (greatest) coordinate of R2 on ρj, then H(R1)∩H(R2) = ∅.
In this case, we say the projections onto ρj of R1 appear all-to-the-left (all-to-



Fig. 1. (a) a Radon partition: on all dimensions the convex hulls of the projections
intersect; (b) not a Radon partition: on two dimensions, the projections of one of
the partite sets are all-to-the-left of the projections of the other partite set.

the-right) of the projections of R2. Figure 1 illustrates the idea.

In [2], Eckhoff determined the Radon number of the convexity space defined
on Rd by the Manhattan metric (u, v) 7→ ||u− v||1 as

r(d) := min

{
r ∈ N :

(
r⌊
r
2

⌋) > 2d

}
. (1)

In [3], Jamison-Waldner observed that Eckhoff’s result could be instantly
leveraged to Grid(n1, . . . , nd) provided nj ≥ r(d)− 1, for all j ∈ [d]. However,
if the grid dimensions are not as large, Eckhoff’s result gives but an upper
bound. In the next section, we will be able to obtain the geodetic Radon
number of grids exactly.

3 The algorithm

Let G = Grid(n1, . . . , nd). The algorithm we propose evaluates the existence
of anti-Radon sets of decreasing size r, starting from Jamison-Waldner’s upper
bound r = r(d)− 1, until it finds one.

Note that the actual coordinates of the vertices of a given set do not really
matter for the sake of deciding whether or not such set is an anti-Radon set.
What does matter is solely the permutation of their projections onto each
dimension.

If a given grid G admits an anti-Radon set R of size r, then, for all possible
partitions R = R1∪R2 (referred to as Radon partition candidates), there must
be a dimension ρj of G where the projections of R1 appear all-to-the-left of the
projections of R2, or vice-versa. We say ρj eliminates that candidate. The



idea of the algorithm is to subsequently attempt to remove each candidate
(from a set containing initially all partitions of [r]) by assigning a dimension
that eliminates it.

A Radon partition candidate R = R1 ∪ R2, with k = |R1| ≤ |R2|,
k ∈ [br/2c], is referred to as a k-candidate for set R.

Claim 3.1 Given a set R with r elements and an integer k ∈ [br/2c], the
number n(r, k) of k-candidates for set R is equal to

(
r
k

)
, if k 6= r/2, and is

equal to 1
2

(
r
k

)
, if k = r/2.

Proof. Trivial. Note only that, if r is even, then for k = r/2, both com-
plementary partite sets will have the same size, so the number of such k-
candidates is only half the number of subsets of R with size k = r/2. 2

Claim 3.2 For all k, the maximum number s(r, k) of k-candidates that can
be eliminated by any given dimension is 2, if k 6= r/2, and is 1, if k = r/2.

Proof. The claim is again immediate for all k 6= r/2. If k = r/2, though, then
a sequence of projections onto ρj that presents exactly k projections all-to-the-
left (of the remaining projections) must also leave exactly r−k = k projections
all-to-the-right. Since those two sets are complementary, they belong to the
same partition of R. 2

The potential of dimension ρj stands for the maximum number of candi-
dates that can be eliminated by dimension ρj. Along the execution of the
algorithm, such value gets decremented by one unit every time a new candi-
date is eliminated by ρj. The following claim is actually a slight rephrasing of
Corollary 4 presented in [1], therefore we omit its proof. It settles the initial
potential of each dimension.

Claim 3.3 Given a subset R comprising r vertices of Grid(n1, n2, . . . , nd) and
some j ∈ {1, . . . , d}, the maximum number t(r, j) of partitions R = R1 ∪ R2

that can be eliminated by dimension ρj equals min{nj, r} − 1.

Theorem 3.4 The algorithm described in Figure 2 calculates the geodetic
Radon number of a given d-dimensional grid in O(d log d) time.

Proof. If the algorithm fails to find an anti-Radon set with size r, then,
for some k, the algorithm was not able to eliminate one k-candidate out of
the n(r, k) total given by Claim 3.1. But that can only happen after the
algorithm has tried to eliminate the maximum possible number s(r, k) of such
candidates per dimension (according to Claim 3.2). And now we have two
possible scenarios:



algorithm: geodetic radon number of grids
input: the dimension sizes nj of a grid G, for j = 1, . . . , d
output: the Radon number of G

1 for r = r(d)− 1, r(d)− 2, . . . , 1 do
2 for j = 1, . . . , d do
3 potential[j]← t(r, j) as in Claim 3.3
4 for k = br/2c, br/2c − 1, . . . , 1 do
5 n← n(r, k) as in Claim 3.1
6 s← s(r, k) as in Claim 3.2
7 for j = 1, . . . , d do
8 count eliminated[j, k]← 0
9 while n > 0 do
10 find j∗ such that potential[j∗] is maximum, satisfying

(i) potential[j∗] > 0, and
(ii) count eliminated[j, k] < s

11 if no such j∗ exists, continue with the next r in line 1
12 n –= 1
13 potential[j∗] –= 1
14 count eliminated[j∗, k] += 1
15 return r + 1
16 return 1

Fig. 2. Algorithm that calculates the Radon number of a grid.

• The grid does not admit any anti-Radon set of size r, in which case the
answer given by the procedure is certainly correct; or

• The grid does admit an anti-Radon set R of size r. For j ∈ [d], let z(k, j)
denote the number of k-candidates R∗ = R∗1∪R∗2 eliminated by ρj. Let also
Z(k, j) be the collection of such candidates. Since the algorithm failed to
eliminate a k-candidate, for some k, then there is one dimension ρj whose
potential was less than z(k, j) by the time the algorithm was considering
that failed candidate. But this means that, for some k′ > k and some
j′ 6= j, there is a k′-candidate in Z(k′, j′) which was associated by the
algorithm to the j-th dimension instead of the j′-th, i.e. which led the
algorithm to decrement the potential of ρj instead of ρj′ . Even after further
eliminations that may have decreased the potential of ρj′ before our k-
candidate was considered, there must be a dimension ρj′′ whose potential is
at least z(k, j′′)+1 by the time the algorithm considers subsets of size k. In
other words, the unit of potential that was not discounted from ρj′ cannot



have vanished. If z(k, j′′) < 2, then the extra unit in the potential of ρj′′
could have been used to eliminate our failed k-candidate. Since that was
obviously not the case (otherwise our k-candidate would not have failed
to be eliminated), then z(k, j′′) = 2, and the potential of ρj′′ is at least
z(k, j′′) + 1 = 3 by the time the algorithm considers the elimination of
our k-candidate — and at all times before that, particularly by the time
the algorithm eliminated the last candidate that reduced the potential of
ρj to something less than z(k, j). Hence the potential of ρj was at most
z(k, j) ≤ s(k, j) ≤ 2 just prior to that particular elimination. And this
clearly contradicts the algorithm’s choice of the dimension whose potential
will be decremented, for it always chooses the dimension with the greatest
potential (Figure 2, line 10), and the potential of ρj′′ was at least 3 at that
precise moment.

Now, if the algorithm returns r + 1, then it succeeded in eliminating all
Radon partition candidates for sets with size r. The existence of an anti-
Radon set with size r can be guaranteed based on the construction discussed
in the proof of Theorem 6 in [1].

As for the execution time, the proposed algorithm runs O(r(d)) iterations
in the worst case, each one taking O(2O(r(d))) time. Thus, we can rely on the
nice approximation (

r

b r
2
c

)
≈ 2r

√
r + 1

·
√

2

π

for the central binomial coefficient [4] to derive r(d) = O(log d), and the overall
time of our algorithm is O(d log d). 2
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