
Randomized watermarks for structured programs
Lucila Bento∗, Davidson Boccardo†, Raphael Machado†, Vinı́cius Pereira de Sá∗, and Jayme Szwarcfiter∗†

∗Universidade Federal do Rio de Janeiro – UFRJ
†Instituto Nacional de Metrologia, Qualidade e Tecnologia – INMETRO

Email: lucilamsbento@gmail.com, {drboccardo, rcmachado}@inmetro.gov.br, vigusmao@dcc.ufrj.br, jayme@nce.ufrj.br

I. INTRODUCTION

Watermarking an object is the act of embedding an identifier
of authorship/ownership within that object, so to discourage
illegal copying. Some years ago, this idea was leveraged to
the context of software protection. Different approaches to
software watermarking have been devised to date. Graph-
based watermarking schemes consist of (i) encoding/decoding
algorithms (codecs) that translate the identification data (the
key) onto (and back from) some special kind of graph; and
(ii) embedding/extracting algorithms to insert/retrieve the wa-
termark graph into/from the program.

Venkatesan et al. [5] proposed the first graph-based water-
marking scheme in which the watermark graph is embedded
into the control flow graph (CFG1) of the software by injecting
dummy code into the original program. Recently, Chroni
and Nikolopoulos proposed a codec [3] in which the key is
encoded as an instance of the reducible permutation graphs
introduced by Collberg et al. [4]. Such graphs have been
proved to allow for the detection of (and recovery from)
malicious attacks in the form of k ≤ 2 edge removals [1].

Other than the standard desirable properties of a watermark
(small size, resilience to attacks, and computational efficiency),
ideally a watermarking scheme should be able to generate
reasonably different graphs to encode the same key (diversity).
Finally, an important feature in a watermark is the ability
to be disguised into the code (stealthiness), preventing that
it is easily found and removed after a reverse engineering
endeavour undertook by a malicious party. Watermarks which
can only make their way into the code with the aid of rather
artificial instructions such as goto statements may give rise to
suspicion, improving an attacker’s odds of success.

II. STRUCTURED WATERMARKS

We propose a new codec for graph-based software water-
marking with the following main properties:

• Diversity. The encoding algorithm employs randomiza-
tion to produce distinct watermarks for the same key
upon different executions. This feature makes it less
likely that a watermark can be spotted by brute force
comparisons among different watermarked programs of
the same author.

1The CFG represents all possible sequences of computation of the pro-
gram’s instructions in the form of a directed graph whose vertices are
the blocks of strictly sequential code, and whose edges indicate possible
precedence relations between those blocks.

• Stealthiness. The dummy code to be injected is struc-
tured—as defined by Dijkstra [2]—, which distinguishes
it from all existing graph-based watermarks we know
of (where goto statements are called for). Thus, when
protecting structured software, the resulting watermarked
CFG will belong to the class of Dijkstra graphs [2].

• Small size. The watermark has just n + 2 vertices and
2n+ 1 edges, where n is the bit-length of the key.

• Resilience. There is a one-to-one correspondence between
the edges of the watermark and the bits of the encoded
key, hence distortive attacks (whereby the watermark is
damaged, but not removed) can be detected after the
graph-to-key decoding process, and the correction of any
flipped bits—up to some predefined number—can be
carried out by standard error-correction techniques.

• Efficiency. Both encoding and decoding run in linear time.
A rough sketch of the algorithm’s central idea follows. Initial-
ize a watermark graph G as a directed path P : 1, 2, . . . , n+2,
then add an edge v → r(v) for each vertex v ∈ {2, . . . , n},
where r(v) is chosen uniformly at random among all candi-
dates for r(v). A vertex w ∈ V (G) \ {v} is a candidate r(v)
if (i) the distance between v and w in P has the same parity
as the vth bit in the binary key; and (ii) it does not violate
structured program constraints. Decoding is straightforward,
since the first bit in the key is always a “1” (leading zeroes
are removed), and the parity of the difference between the
endpoints of each edge in G \P indicates each remaining bit.

REFERENCES

[1] Lucila Bento, Davidson Boccardo, Raphael Machado, Vinı́cius Pereira
de Sá, and Jayme Szwarcfiter. 2013. Towards a Provably Resilient
Scheme for Graph-Based Watermarking. In 39th International Workshop
Graph-Theoretic Concepts in Computer Science (WG 2013). Springer,
Lübeck, Germany, 50–63.

[2] Lucila Bento, Davidson Boccardo, Raphael Machado, Vinı́cius Pereira
de Sá, and Jayme Szwarcfiter. 2015. The Graphs of Structured Program-
ming. In 13th Cologne-Twente Workshop on Graphs and Combinatorial
Optimization.

[3] Maria Chroni and Stavros Nikolopoulos. 2012. An Efficient Graph
Codec System for Software Watermarking. In Proceedings of the 2012
IEEE 36th Annual Computer Software and Applications Conference
Workshops (COMPSACW’12). IEEE Computer Society, Washington,
DC, USA, 595–600.

[4] Christian Collberg, Stephen Kobourov, Edward Carter, and Clark Thom-
borson. 2003. Error-Correcting graphs for software watermarking. In
Proceedings of the 29th Workshop on Graph Theoretic Concepts in
Computer Science, 156–167.

[5] Ramarathnam Venkatesan, Vijay V. Vazirani, and Saurabh Sinha. 2001.
A Graph Theoretic Approach to Software Watermarking. In Proceedings
of the 4th International Workshop on Information Hiding (IHW ’01), Ira
S. Moskowitz (Ed.). Springer-Verlag, London, UK, UK, 157–168.


