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Abstract A unit disk graph G is a graph whose vertices can be mapped to points on the plane and whose
edges are defined by pairs of points within unitary Euclidean distance from one another. The
recognition of unit disk graphs is no easy feat. Indeed, the fastest known algorithm to decide
whether a given graph is a unit disk graph is doubly exponential. In this paper, we introduce a
practical algorithm to produce certified answers to the question “is G a unit disk graph?” in either
way, for any given graph G. By imposing that the points’ coordinates belong to discrete sets of
increasing granularity, our method builds a sequence of trigraphs G′, i.e. graphs with mandatory
and optional edges, until either some G′ is found possessing properties which certify that G is a
unit disk graph, or the sequence of trigraphs has to be interrupted, certifying that G is not a unit
disk graph. The proposed method was actually implemented, and we were able to obtain our first
certificates for some small graphs.
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1. Motivation

A unit disk graph (UDG) is a graph whose n vertices can be mapped to points on the plane
and whose m edges are defined by pairs of points within Euclidean distance at most 1 from one
another. Alternatively, one can regard the vertices of a UDG as mapped to coplanar congruent
disks, so that two vertices are adjacent whenever the corresponding disks intersect. Unit disk
graphs have been widely studied in recent times due to their applications to wireless sensor
networks [1].

In this paper, we consider the problem of recognizing unit disk graphs. Though a YES answer
can be verified in polynomial time assuming the Real RAM model, the size of certificates
comprising the coordinates of the disk centers may not be polynomially bounded under the
classic model of computation over finite strings [3]. Indeed, it is not known for the time being
whether the problem belongs to NP, and the fastest known recognition algorithm is doubly
exponential [4]. Since no practical algorithm is available, there are graphs with as few as ten
vertices which have never been proved as being (or not being) UDG [5].

A practical method to certify whether a graph is a UDG is of utmost importance. Indeed,
many of the existing bounds for approximation factors of algorithms for hard problems on unit
disk graphs are based on the fact that certain graphs are (or are not) UDG, but each one of

∗Research partially supported by FAPERJ and CNPq.



2 Guilherme da Fonseca, Vinícius Pereira de Sá, Raphael Machado, and Celina de Figueiredo

Figure 1. Graph conjectured [5] not to be a UDG.
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Figure 2. Graph that corresponds to the lower
bound for the approximation factor of the algo-
rithm introduced in [2] for minimum (independent)
dominating sets in unit disk graphs.

those graphs demanded their own ad-hoc geometric proof. For an example, [5] conjectures that
the graph in Figure 1 is not a UDG. The correctness of their conjecture would imply a decrease
from 3.8 to 3.6 in the maximum ratio (except for an additive constant) between the size of a
maximal independent set and the size of a connected dominating set in any given UDG, and
that would immediately tighten the approximation factor of algorithms that estimate the size
of minimum connected dominating sets by computing maximal independent sets.

Another example was obtained in [2]. Denote by Gp,q the graph that has one p-clique such
that one of its vertices is adjacent to q pendant vertices, and each of the other p− 1 vertices is
adjacent to a degree-2 vertex that in turn is a pendant vertex of an induced K1,5. The graph
G5,4 of Figure 2 is known to be a UDG (a geometric model with only integral coordinates is
available) and is the worst known instance for an algorithm that approximates the minimum
(independent) dominating set of a unit disk graph, establishing a lower bound of 4.8 for the
approximation factor of that algorithm. On the other hand, the graph G9,4 is known not to
be a UDG (the proof is based on numerous geometric lemmas), and this fact is central in the
proof of the (upper bound for the) approximation factor of 44/9 = 4.888 . . . of such algorithm.
Further knowledge about the family Gp,q, closing the gap between what is currently known to
be a UDG (graph G5,4) and what is known not to be a UDG (graph G9,4) would immediately
tighten the existing bounds on the approximation factor of the aforementioned algorithm.

The difficulty in developing a certifier for unit disk graphs, even a “brute force” one, comes
from the fact that the solution space — namely (R2)n — is uncountable. In the present paper,
we formulate a strategy to reduce the solution space to a countable, finite set, whose granularity
is subsequently refined, leading to a YES/NO certificate in many cases. An inconclusive answer,
however, may possibly be obtained.

2. The proposed model

The central idea of our strategy is to discretize the solution space by defining an enumerable
set of 2-dimensional coordinates where the points associated to the input graphs’ vertices may
be placed at. For a positive ε ∈ R, consider the set Nε := {x ∈ R | x = dε, d ∈ N}, and let
Cε := Nε ×Nε be a discrete set of 2-dimensional coordinates. We call such Cε a mesh and we
say Cε1 is thinner than Cε2 if ε1 < ε2. Clearly, any subset of points Mε ⊆ Cε determines a unit
disk graph G whose vertices are pairwise adjacent whenever their corresponding points in Mε

are within unitary distance of one another. We say Mε is an ε-discrete model for G.

Trigraph embodiments. Given a mesh Cε and a set Mε ⊆ Cε of n points, we define the
trigraph GMε = (V,E1 ∪E2) as the graph whose vertex set V corresponds to the points in Mε,
and whose edges can be partitioned into E1, the set of mandatory edges, and E2, the set of
optional edges. A mandatory edge is associated to a pair of points v, w ∈ Mε that are at
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distance d(v, w) < 1 − ε
√
2 from one another. An optional edge, on its turn, is associated to

a pair of points v, w ∈ Mε satisfying 1 − ε
√
2 ≤ d(v, w) ≤ 1 + ε

√
2. We say GMε is a trigraph

embodiment of graph G(V,E) if, and only if, E ⊆ E1 ∪ E2 and E1 \ E = ∅, i.e. all edges of G
are either mandatory or optional edges in GMε , and no edge that does not belong to G appears
as a mandatory edge in GMε .

If GMε is a trigraph embodiment of G, and GMε has no optional edges, thenMε is a unit disk
model for G, hence G is certainly a UDG. Moreover, if GMε does have optional edges, but all
optional edges in GMε correspond to pairs of adjacent vertices in G, then G is a UDG as well.
(The same goes for the case where all optional edges in GMε correspond to pairs of non-adjacent
vertices in G.) This is the core of the YES certificates produced by our method.

It can be shown that, if G is a UDG, then G admits a trigraph embodiment GMε , for all
ε > 0. Conversely, if, for some ε, there is no possible trigraph embodiment GMε for G, then G
is not a UDG. Our NO certificates come from this fact.

Our strategy to recognize unit disk graphs can therefore be summarized in the following steps:

INPUT: A connected graph G = (V,E)
OUTPUT: YES, if G is a UDG; NO, if it is not a UDG; or INCONCLUSIVE.

1. Choose a value for ε and consider the corresponding mesh Cε.

2. For each possible discrete model Mε ⊆ Cε with |M | = |V |, obtain the respective trigraph
GMε = (V,E1, E2).

(a) If E = E1 then a disk model was found for G, hence G is a UDG. Return YES.
(b) If E ⊆ E1 ∪ E2 and E1 \ E = ∅, then GMε is a trigraph embodiment for G.

3. If a trigraph embodiment was found for G, then let ε ← ε/2. If ε is still greater than
some previously defined constant εmin, then restart the algorithm with the new value
for ε; otherwise, return INCONCLUSIVE.

4. If no trigraph embodiment was found for G, then G is not a UDG. Return NO.

Note that, in spite of the apparent infinite number of possible discrete models, we may assume
that G is connected1, so any model of G must be enclosed in a disk of diameter 2|V |.

Notice also that, whenever the algorithm produces a conclusive answer, then an appropriate
certificate has been found. However, as discussed in Section 4, the input graph may not be a
UDG, but still be such that, no matter how thin the mesh is, a trigraph model can always be
found, leading the algorithm to an inconclusive answer.

3. Results

To validate our proposed model, we implemented it using the Python language. Our implemen-
tation includes some nice refinements aimed at reducing the number of candidate placements
of each vertex in the considered mesh, such as

(i) taking the maximum and minimum distances between pairs of vertices as input;

(ii) taking the maximum and minimum angle between two vertices with respect to a third one
as input;

(iii) allowing the imposition of a fixed circular order of vertices around a reference point.

Naturally, such features can only be used if some previous geometric analysis determines such
distances and angles constraints. With this preliminary implementation, we could already
correctly classify some small graphs as being (or not being) UDG.

1Trivially, a graph is a UDG if and only if all its connected components are UDG.
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Figure 3. Graph K1,6. Figure 4. Discrete model for graph K1,6. The
circles are not the unit-diameter disks themselves,
but rather represent their centers. The two over-
lapping circles represent the centers of coincident
disks.

Figure 5. Trigraph corresponding to Figure 4.

4. Future directions

In spite of the nice results it has enabled us to obtain, the proposed method does presents some
limitations, one of which is disclosed by the following “pathological” example.

Let G be the K1,6 graph, which is known (by geometric methods) not to be a UDG. Our
procedure is doomed to give an inconclusive answer for G no matter how thin the mesh is. The
reason is that, for all ε > 0, there is always a trigraph embodiment GMε for G, in which the
center of the star and one of the leaves coincide (see Figures 3, 4 and 5).

A second weakness of the method is its worst-case time complexity, since the time demanded
to produce a certificate for certain graphs may be as long as unforeseeable.

The previous observations lead to the following open questions, which are currently under
investigation.

1. Is it possible to characterize such “pathological” graphs, those which deny our method any
chance of recognizing them in either way?

2. Is it possible to modify our method so that it always stop with a conclusive question
within a reasonable, predetermined time?

Notwithstanding the open questions above, there seem to be several promising ways our
method can be improved upon. We list some of them below.

The exhaustive enumeration of possible trigraph embodiments for G can be achieved by
a backtracking-based approach. First, a sequence v1, . . . , vn of vertices of G must be
determined, in such a way that the subgraph Gk of G induced by v1, . . . , vk is connected
for all k ∈ {1, . . . , n}. Each vertex vk is then positioned, one at a time, at some point of
the mesh, in such a way that the set of already occupied points of the mesh (including
the one assigned to vk) defines a trigraph embodiment for Gk. By doing so, the search
space for trigraph embodiments for G shall decrease considerably.
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By the end of the k-th iteration of the algorithm, after some trigraph embodiments were
found, the value of ε is halved, so each former grid point p gives rise to four grid points
p1, p2, p3, p4 to be considered (as possible vertex locations) during the (k + 1)-th itera-
tion. It shall now be possible to eliminate at once from the list of candidate locations
for a vertex v all points pi corresponding to a point p that was not occupied by v in
any trigraph embodiment obtained in the k-th iteration. By so doing, the search for tri-
graph embodiments on the thiner mesh becomes limited to “refining” previously obtained
trigraph embodiments, instead of a search that would otherwise have begun from scratch.

Proving geometric results such as “if G is a UDG, then G admits a disk model where
no two vertices are either vertically aligned, or horizontally aligned, or coincident” may
allow for the earlier elimination of a considerable number of discrete models, therefore
also speeding up the algorithm.
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